8,440 research outputs found

    Linear Temporal Logic for Hybrid Dynamical Systems: Characterizations and Sufficient Conditions

    Get PDF
    This paper introduces operators, semantics, characterizations, and solution-independent conditions to guarantee temporal logic specifications for hybrid dynamical systems. Hybrid dynamical systems are given in terms of differential inclusions -- capturing the continuous dynamics -- and difference inclusions -- capturing the discrete dynamics or events -- with constraints. State trajectories (or solutions) to such systems are parameterized by a hybrid notion of time. For such broad class of solutions, the operators and semantics needed to reason about temporal logic are introduced. Characterizations of temporal logic formulas in terms of dynamical properties of hybrid systems are presented -- in particular, forward invariance and finite time attractivity. These characterizations are exploited to formulate sufficient conditions assuring the satisfaction of temporal logic formulas -- when possible, these conditions do not involve solution information. Combining the results for formulas with a single operator, ways to certify more complex formulas are pointed out, in particular, via a decomposition using a finite state automaton. Academic examples illustrate the results throughout the paper.Comment: 35 pages. The technical report accompanying "Linear Temporal Logic for Hybrid Dynamical Systems: Characterizations and Sufficient Conditions" submitted to Nonlinear Analysis: Hybrid Systems, 201

    Formal Synthesis of Control Strategies for Positive Monotone Systems

    Full text link
    We design controllers from formal specifications for positive discrete-time monotone systems that are subject to bounded disturbances. Such systems are widely used to model the dynamics of transportation and biological networks. The specifications are described using signal temporal logic (STL), which can express a broad range of temporal properties. We formulate the problem as a mixed-integer linear program (MILP) and show that under the assumptions made in this paper, which are not restrictive for traffic applications, the existence of open-loop control policies is sufficient and almost necessary to ensure the satisfaction of STL formulas. We establish a relation between satisfaction of STL formulas in infinite time and set-invariance theories and provide an efficient method to compute robust control invariant sets in high dimensions. We also develop a robust model predictive framework to plan controls optimally while ensuring the satisfaction of the specification. Illustrative examples and a traffic management case study are included.Comment: To appear in IEEE Transactions on Automatic Control (TAC) (2018), 16 pages, double colum

    Time-Staging Enhancement of Hybrid System Falsification

    Full text link
    Optimization-based falsification employs stochastic optimization algorithms to search for error input of hybrid systems. In this paper we introduce a simple idea to enhance falsification, namely time staging, that allows the time-causal structure of time-dependent signals to be exploited by the optimizers. Time staging consists of running a falsification solver multiple times, from one interval to another, incrementally constructing an input signal candidate. Our experiments show that time staging can dramatically increase performance in some realistic examples. We also present theoretical results that suggest the kinds of models and specifications for which time staging is likely to be effective

    Time-Constrained Temporal Logic Control of Multi-Affine Systems

    Get PDF
    In this paper, we consider the problem of controlling a dynamical system such that its trajectories satisfy a temporal logic property in a given amount of time. We focus on multi-affine systems and specifications given as syntactically co-safe linear temporal logic formulas over rectangular regions in the state space. The proposed algorithm is based on the estimation of time bounds for facet reachability problems and solving a time optimal reachability problem on the product between a weighted transition system and an automaton that enforces the satisfaction of the specification. A random optimization algorithm is used to iteratively improve the solution
    • …
    corecore