15,954 research outputs found

    Kuhn-Tucker-based stability conditions for systems with saturation

    Get PDF
    This paper presents a new approach to deriving stability conditions for continuous-time linear systems interconnected with a saturation. The method presented can be extended to handle a dead-zone, or in general, nonlinearities in the form of piecewise linear functions. By representing the saturation as a constrained optimization problem, the necessary (Kuhn-Tucker) conditions for optimality are used to derive linear and quadratic constraints which characterize the saturation. After selecting a candidate Lyapunov function, we pose the question of whether the Lyapunov function is decreasing along trajectories of the system as an implication between the necessary conditions derived from the saturation optimization, and the time derivative of the Lyapunov function. This leads to stability conditions in terms of linear matrix inequalities, which are obtained by an application of the S-procedure to the implication. An example is provided where the proposed technique is compared and contrasted with previous analysis methods

    H∞ Control of Nonlinear Systems: A Class of Controllers

    Get PDF
    The standard state space solutions to the H∞ control problem for linear time invariant systems are generalized to nonlinear time-invariant systems. A class of nonlinear H∞-controllers are parameterized as nonlinear fractional transformations on contractive, stable free nonlinear parameters. As in the linear case, the H∞ control problem is solved by its reduction to four simpler special state space problems, together with a separation argument. Another byproduct of this approach is that the sufficient conditions for H∞ control problem to be solved are also derived with this machinery. The solvability for nonlinear H∞-control problem requires positive definite solutions to two parallel decoupled Hamilton-Jacobi inequalities and these two solutions satisfy an additional coupling condition. An illustrative example, which deals with a passive plant, is given at the end

    A passivity-based stability criterion for a class of interconnected systems and applications to biochemical reaction networks

    Full text link
    This paper presents a stability test for a class of interconnected nonlinear systems motivated by biochemical reaction networks. One of the main results determines global asymptotic stability of the network from the diagonal stability of a "dissipativity matrix" which incorporates information about the passivity properties of the subsystems, the interconnection structure of the network, and the signs of the interconnection terms. This stability test encompasses the "secant criterion" for cyclic networks presented in our previous paper, and extends it to a general interconnection structure represented by a graph. A second main result allows one to accommodate state products. This extension makes the new stability criterion applicable to a broader class of models, even in the case of cyclic systems. The new stability test is illustrated on a mitogen activated protein kinase (MAPK) cascade model, and on a branched interconnection structure motivated by metabolic networks. Finally, another result addresses the robustness of stability in the presence of diffusion terms in a compartmental system made out of identical systems.Comment: See http://www.math.rutgers.edu/~sontag/PUBDIR/index.html for related (p)reprint

    Modeling and Control of High-Voltage Direct-Current Transmission Systems: From Theory to Practice and Back

    Full text link
    The problem of modeling and control of multi-terminal high-voltage direct-current transmission systems is addressed in this paper, which contains five main contributions. First, to propose a unified, physically motivated, modeling framework - based on port-Hamiltonian representations - of the various network topologies used in this application. Second, to prove that the system can be globally asymptotically stabilized with a decentralized PI control, that exploits its passivity properties. Close connections between the proposed PI and the popular Akagi's PQ instantaneous power method are also established. Third, to reveal the transient performance limitations of the proposed controller that, interestingly, is shown to be intrinsic to PI passivity-based control. Fourth, motivated by the latter, an outer-loop that overcomes the aforementioned limitations is proposed. The performance limitation of the PI, and its drastic improvement using outer-loop controls, are verified via simulations on a three-terminals benchmark example. A final contribution is a novel formulation of the power flow equations for the centralized references calculation
    corecore