945 research outputs found

    Multi-Resolution Hashing for Fast Pairwise Summations

    Full text link
    A basic computational primitive in the analysis of massive datasets is summing simple functions over a large number of objects. Modern applications pose an additional challenge in that such functions often depend on a parameter vector yy (query) that is unknown a priori. Given a set of points XβŠ‚RdX\subset \mathbb{R}^{d} and a pairwise function w:RdΓ—Rdβ†’[0,1]w:\mathbb{R}^{d}\times \mathbb{R}^{d}\to [0,1], we study the problem of designing a data-structure that enables sublinear-time approximation of the summation Zw(y)=1∣Xβˆ£βˆ‘x∈Xw(x,y)Z_{w}(y)=\frac{1}{|X|}\sum_{x\in X}w(x,y) for any query y∈Rdy\in \mathbb{R}^{d}. By combining ideas from Harmonic Analysis (partitions of unity and approximation theory) with Hashing-Based-Estimators [Charikar, Siminelakis FOCS'17], we provide a general framework for designing such data structures through hashing that reaches far beyond what previous techniques allowed. A key design principle is a collection of Tβ‰₯1T\geq 1 hashing schemes with collision probabilities p1,…,pTp_{1},\ldots, p_{T} such that sup⁑t∈[T]{pt(x,y)}=Θ(w(x,y))\sup_{t\in [T]}\{p_{t}(x,y)\} = \Theta(\sqrt{w(x,y)}). This leads to a data-structure that approximates Zw(y)Z_{w}(y) using a sub-linear number of samples from each hash family. Using this new framework along with Distance Sensitive Hashing [Aumuller, Christiani, Pagh, Silvestri PODS'18], we show that such a collection can be constructed and evaluated efficiently for any log-convex function w(x,y)=eΟ•(⟨x,y⟩)w(x,y)=e^{\phi(\langle x,y\rangle)} of the inner product on the unit sphere x,y∈Sdβˆ’1x,y\in \mathcal{S}^{d-1}. Our method leads to data structures with sub-linear query time that significantly improve upon random sampling and can be used for Kernel Density or Partition Function Estimation. We provide extensions of our result from the sphere to Rd\mathbb{R}^{d} and from scalar functions to vector functions.Comment: 39 pages, 3 figure

    Fully Polynomial Time Approximation Schemes for Stochastic Dynamic Programs

    Get PDF
    We present a framework for obtaining fully polynomial time approximation schemes (FPTASs) for stochastic univariate dynamic programs with either convex or monotone single-period cost functions. This framework is developed through the establishment of two sets of computational rules, namely, the calculus of K-approximation functions and the calculus of K-approximation sets. Using our framework, we provide the first FPTASs for several NP-hard problems in various fields of research such as knapsack models, logistics, operations management, economics, and mathematical finance. Extensions of our framework via the use of the newly established computational rules are also discussed

    04091 Abstracts Collection -- Data Structures

    Get PDF
    From 22.02. to 27.02.2004, Dagstuhl Seminar "Data Structures" was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper. The first section describes the seminar topics and goals in general
    • …
    corecore