117 research outputs found

    Real Time Underwater Obstacle Avoidance and Path Re-planning Using Simulated Multi-beam Forward Looking Sonar Images for Autonomous Surface Vehicle

    Get PDF
    This paper describes underwater obstacle avoidance and path re-planning techniques for autonomous surface vehicle (ASV) based on simulated multi-beam forward looking sonar images. The sonar image is first simulated and then a circular obstacle is defined and created in the field of view of the sonar. In this study, the robust real-time path re-planning algorithm based on an A* algorithm is developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames with a proper update frequency between the start point and the goal point both in static and dynamical environments. The performance of proposed method is verified through simulations, and tank experiments using an actual ASV. While the simulation results are successful, the vehicle model can avoid both single obstacle, multiple obstacles and moving obstacle with the optimal trajectory. For tank experiments, the proposed method for underwater obstacle avoidance system is implemented with the ASV test platform. The vehicle is controlled in real-time and moderately succeeds in its avoidance against the obstacle simulated in the field of view of the sonar together with the proposed position stochastic estimation of the vehicle

    Continual Optimal Adaptive Tracking Of Uncertain Nonlinear Continuous-time Systems Using Multilayer Neural Networks

    Get PDF
    This study provides a lifelong integral reinforcement learning (LIRL)-based optimal tracking scheme for uncertain nonlinear continuous-time (CT) systems using multilayer neural network (MNN). In this LIRL framework, the optimal control policies are generated by using both the critic neural network (NN) weights and single-layer NN identifier. The critic MNN weight tuning is accomplished using an improved singular value decomposition (SVD) of its activation function gradient. The NN identifier, on the other hand, provides the control coefficient matrix for computing the control policies. An online weight velocity attenuation (WVA)-based consolidation scheme is proposed wherein the significance of weights is derived by using Hamilton-Jacobi-Bellman (HJB) error. This WVA term is incorporated in the critic MNN update law to overcome catastrophic forgetting. Lyapunov stability is employed to demonstrate the uniform ultimate boundedness of the overall closed-loop system. Finally, a numerical example of a two-link robotic manipulator supports the theoretical claims

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs

    Distributed Cooperative Deployment of Heterogeneous Autonomous Agents: A Pareto Suboptimal Approach

    Get PDF
    The paper presents a distributed cooperative control law for autonomous deployment of a team of heterogeneous agents. Deployment problems deal with the coordination of groups of agents in order to cover one or more assigned areas of the operational space. In particular, we consider a team composed by agents with different dynamics, sensing capabilities, and resources available for the deployment. Sensing heterogeneity is addressed by means of the descriptor function framework, an abstraction that provides a set of mathematical tools for describing both agent sensing capabilities and the desired deployment. A distributed cooperative control law is then formally derived nding a suboptimal solution of a cooperative dierential game, where the agents are interested in achieving the requested deployment, while optimizing the resources usage according to their dynamics. The control law eectiveness is proven by theoretical arguments, and supported by numerical simulations

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Cooperative Control and Fault Recovery for Network of Heterogeneous Autonomous Underwater Vehicles

    Get PDF
    The purpose of this thesis is to develop cooperative recovery control schemes for a team of heterogeneous autonomous underwater vehicles (AUV). The objective is to have the network of autonomous underwater vehicles follow a desired trajectory while agents maintain a desired formation. It is assumed that the model parameters associated with each vehicle is different although the order of the vehicles are the same. Three cooperative control schemes based on dynamic surface control (DSC) technique are developed. First, a DSC-based centralized scheme is presented in which there is a central controller that has access to information of all agents at the same time and designs the optimal solution for this cooperative problem. This scheme is used as a benchmark to evaluate the performance of other schemes developed in this thesis. Second, a DSC-based decentralized scheme is presented in which each agent designs its controller based on only its information and the information of its desired trajectory. In this scheme, there is no information exchange among the agents in the team. This scheme is also developed for the purpose of comparative studies. Third, two different semi-decentralized or distributed schemes for the network of heterogeneous autonomous underwater vehicles are proposed. These schemes are a synthesis of a consensus-based algorithm and the dynamic surface control technique with the difference that in one of them the desired trajectories of agents are used in the consensus algorithm while in the other the actual states of the agents are used. In the former scheme, the agents communicate their desired relative distances with the agents within their set of nearest neighbors and each agent determines its own control trajectory. In this semi-decentralized scheme, the velocity measurements of the virtual leader and all the followers are not required to reach the consensus formation. However, in the latter, agents communicate their relative distances and velocities with the agents within their set of nearest neighbors. In both semi-decentralized schemes only a subset of agents has access to information of a virtual leader. The comparative studies between these two semi-decentralized schemes are provided which show the superiority of the former semi-decentralized scheme over latter. Furthermore, to evaluate the efficiency of the proposed DSC-based semi-decentralized scheme with consensus algorithm using desired trajectories, a comparative study is performed between this scheme and three cooperative schemes of model-dependent coordinated tracking algorithm, namely the centralized, decentralized, and semi-decentralized schemes. Given that the dynamics of autonomous underwater vehicles are inevitably subjected to system faults, and in particular the actuator faults, to improve the performance of the network of agents, active fault-tolerant control strategies corresponding to the three developed schemes are also designed to recover the team from the loss-of-effectiveness in the actuators and to ensure that the closed-loop signals remain bounded and the team of heterogeneous autonomous underwater vehicles satisfy the overall design specifications and requirements. The results of this research can potentially be used in various marine applications such as underwater oil and gas pipeline inspection and repairing, monitoring oil and gas pipelines, detecting and preventing any oil and gas leakages. However, the applications of the proposed cooperative control and its fault-tolerant scheme are not limited to underwater formation path-tracking and can be applied to any other multi-vehicle systems that are characterized by Euler–Lagrange equations

    Technology for large space systems: A bibliography with indexes (supplement 17)

    Get PDF
    This bibliography lists 512 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1987 and June 30, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Space Station Systems: a Bibliography with Indexes (Supplement 8)

    Get PDF
    This bibliography lists 950 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included
    corecore