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Continual Optimal Adaptive Tracking of Uncertain Nonlinear
Continuous-time Systems using Multilayer Neural Networks

Irfan Ganie1 and S. Jagannathan

Abstract— This study provides a lifelong integral reinforce-
ment learning (LIRL)-based optimal tracking scheme for uncer-
tain nonlinear continuous-time (CT) systems using multilayer
neural network (MNN). In this LIRL framework, the optimal
control policies are generated by using both the critic neural
network (NN) weights and single-layer NN identifier. The critic
MNN weight tuning is accomplished using an improved singular
value decomposition (SVD) of its activation function gradient.
The NN identifier, on the other hand, provides the control
coefficient matrix for computing the control policies. An online
weight velocity attenuation (WVA)-based consolidation scheme
is proposed wherein the significance of weights is derived by
using Hamilton-Jacobi-Bellman (HJB) error. This WVA term
is incorporated in the critic MNN update law to overcome
catastrophic forgetting. Lyapunov stability is employed to
demonstrate the uniform ultimate boundedness of the overall
closed-loop system. Finally, a numerical example of a two-link
robotic manipulator supports the theoretical claims.

Index Terms— Lifelong learning, Reinforcement learning,
Multilayer neural networks, Catastrophic forgetting, Continual
learning.

I. INTRODUCTION

Optimal control of dynamic system has been a research
topic in the controls community in the recent past. Optimal
control aims to identify control policies in order to minimize
an objective function that is subject to system dynamics.
Optimal policies can be derived either by applying the
Pontryagin minimum principle from classical methods or by
solving the Hamilton-Jacobi-Bellman (HJB) equation [1], [2]
in dynamic programming; however, obtaining a closed-form
analytical solution to the partial differential HJB equation is
a major challenge. Traditionally, solutions to HJB equation
[1], [2] are often offline and require a complete knowledge
of system dynamics in order to obtain the control policies.

A number of online optimal adaptive approximation-based
control approaches over infinite time horizon, also known as
adaptive critic designs (ACDs) by using adaptive dynamic
programming (ADP) framework, are introduced in [3] to
the traditional offline and backward-in-time techniques. The
HJB equation is solved using successive approximations by
the ACD approaches [3] utilizing either value or policy
iteration techniques and the solution is employed to generate
optimal control policies. In contrast to value iteration-based
techniques, policy iteration methods often require an initial
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Engg, Missouri University of Science and Technology, Rolla, MO, USA .
iag76b@mst.edu and sarangap@mst.edu .

The project or effort undertaken was or is sponsored by the Office
of Naval Research Grant N00014-21-1-2232 and Army Research Office
Cooperative Agreements W911NF-21-2-0260 and W911NF-22-2-0185.

admissible control input [3] which can be difficult to find
when the system dynamics are uncertain.

In ADP, NNs have been used to provide an approximative
solution to the HJB equation [1],[4] and an optimal control
of CT nonlinear systems (CTNS) [5] over infinite time
horizon was presented provided the control coefficient matrix
can be invertible. In [6], an augmented system consisting
of tracking error and desired reference trajectory overcame
this restriction by transforming the optimal tracking to a
regulation problem.

The above-discussed techniques [3], [4] depend on com-
prehensive knowledge of system dynamics which could be
a bottleneck in practical applications. Integral reinforcement
learning (IRL) schemes using value or policy iteration have
recently been introduced in the literature [6], [7] as an
alternate formulation that does not require drift dynamics.
However, the control coefficient matrix is still required
in [6], [7] and single-layer NN with basis functions are
employed. Multilayer NN (MNN) relax the need for basis
function especially when the system dynamics are uncertain
whereas discovering weight tuning laws for MNN is a major
challenge.

On the other hand, although NN control techniques for
nonlinear systems use predominantly online learning [6], [7]
using single-layer NN instead of offline training, forgetting
the previously learned knowledge is a prevalent problem with
NN-based techniques when these nonlinear systems operate
in multitask environment. Available LL techniques such as
elastic weight consolidation (EWC) [8], [9] perform well in
offline scenario to mitigate the issues of catastrophic forget-
ting, however, certain weights can become extremely large
in EWC based scheme [8],[10] thus leading to exploding
gradient issues [11].

Therefore, in this paper, by using MNN-based IRL frame-
work, a novel optimal adaptive tracking scheme is proposed
for uncertain nonlinear CT systems in affine form without
using policy/value iterations. This tracking scheme includes
singular value decomposition (SVD) based weight tuning
method for the critic MNN to overcome vanishing gradient of
the activation functions. The SVD based method decomposes
the gradient into singular values and singular vectors, and by
analyzing and modifying the singular values, the impact of
vanishing gradients on system performance can be overcome.
An identifier is introduced so as to obviate the need for
control coefficient dynamics. A novel online weight velocity
attenuation (WVA) based LL scheme is included as part
of the weight tuning for tracking to mitigate catastrophic
forgetting in multitask systems. Unlike previous offline based
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approaches [8], [11] that relied on having access to target
values, in the proposed online LL method, the significance
of weights is obtained by using the estimated HJB error.
The net result is the development of a novel online lifelong
integral reinforcement learning (LIRL)-based MNN optimal
adaptive tracking control scheme.

II. PROBLEM STATEMENT

Consider a continuous-time nonlinear system given by

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

where x(t) ∈ Rn, u(t) ∈ Rm, f(x) ∈ Rn, g(x) ∈
Rn×m represents system states, control input, system drift
dynamics, and the system input dynamics respectively. It is
assumed that the drift and input dynamics are unknown but
locally Lipschitz continuous in x over a set ψ ⊂ Rn.

Assumption 1: Assume rd(t) be the reference trajectory
governed by ṙd(t) = fd(rd(t)) ∈ Rn and f(0) = 0, rd(t) is
bounded and fd(rd(t)) is Lipschitz continuous in rd(t).

Define the tracking error as

etr(t) = x(t)− rd(t). (2)

The dynamics of the tracking error can be written as

ėtr(t) = f(etr(t)+rd(t))+g(etr(t)+rd(t))u(t)−fd(rd(t)).
(3)

The dynamics of the augmented system state vector z =
[e⊤tr, r

⊤
d ]

⊤ ∈ R2n can be expressed as

ż(t) = Faug(z(t)) +Gaug(z(t))u(t), (4)

where Faug(z(t)) =

[
f(etr + rd(t))− fd(rd(t))

fd(rd(t))

]
and

Gaug(z(t)) =

[
g(etr + rd(t))

0

]
.

Assumption 2 ([4]): The nonlinear system is control-
lable and observable.The control coefficient matrix satisfies
∥g(x)∥ ≤ gM , where gM is an unknown constant.

Now the objective is to identify the optimal control input
that minimizes the following cost function given by

J(z(t)) =

∫ ∞

t

e−µ(s−t)
[
z⊤(s)Qz1z(s) + u⊤(s)Ru(s)

]
ds,

(5)

where Qz1 =

[
Qz1 0n×n
0n×n 0n×n

]
and Qz1 ≥ 0, R = R⊤ > 0, µ

is a discount factor. By taking the derivative of (5) along the
system trajectories (4) and rearranging the terms, one can
write

∇J(Faug(z) +Gaug(z)u)− µJ(z) + z⊤Qz1z +U(u)

= Haug(z, u,∇J) = 0,
(6)

where Haug being the Hamiltonian based on augmented
system, U(u) denotes u⊤(s)Ru(s) and ∆J represents the
partial derivative of the value function J with respect to z.
Let the optimal cost function J∗(z) satisfies Haug = 0 and
is written as

J∗(z) = min
u

∫ ∞

t

e−µ(s−t)
[
z⊤Qz1z +U(u)

]
ds. (7)

Thus J∗ ≜ J∗(z). Therefore, Haug(z, u,∇J∗) = 0 can be
re-written as

∇J∗(Faug(z)+Gaug(z)u)−µJ∗+z⊤Qz1z+U(u) = 0, (8)

where ∆J∗ is the partial derivative of the value function J∗

with respect to z. By taking the derivative of (8) with respect
to u, i.e. ∂Haug/∂u = 0, the optimal control policy, u∗, is
obtained as

u∗ = −1

2
R−1G⊤

aug(z)∇J∗(z). (9)

As a result, the optimal value function can be found as

J∗(z(t)) =

∫ ∞

t

e−µ(s−t)
[
z⊤(s)Qz1z(s)

+ u∗⊤(s)Ru∗(s)]ds.

(10)

By substituting (9) into (8) , the equivalent HJB equation for
tracking can be obtained as

Qz(z)− µJ∗(z) +∇J∗⊤(z)Faug(z)

− 1

4
∇J∗⊤(z)Gaug(z)R

−1G⊤
aug(z)∇J∗(z) = 0,

(11)

where Qz = zQz1z. Next, an online reinforcement learning
approach using MNNs is given to solve the HJB equation
approximately and generate the optimal control policies.

III. CONTINUAL MULTI-LAYER CRITIC NN CONTROL

The cost function (10) and ∇J∗ can be expressed using a
MNN as

J∗(z) = D⊤σ(V ⊤σ(z)) + ϵ(z), (12)

∇J∗(z) = ∇σ⊤
2 V∇σ⊤

1 D +∇ϵ(z), (13)

where σ1 = σ(V ⊤σ(z)), σ2 = σ(z),∇σ1 = ∂σ1

∂z ,∇σ2 =
∂σ2

∂z , ϵ(z) is the approximation error, σ1, σ2 are the activation
functions for output and hidden layer respectively, D and V
are the output and hidden layer target weights respectively.

Now to use the IRL formulation, it is necessary to integrate
the infinitesimal representation of (5) throughout the time
range [t− T, t], where T is a fixed time interval to get

J(zt−T ) =

∫ T

t−T
e−µ(s−t+T )[Qz(z(s)) +U(u(s))]ds

+ e−µTJ(z(t)).

(14)

Now using the approximation (13) in (9), the control input
in terms of target weights can be shown as

u = −1

2
R−1G⊤

aug(z)D
⊤∇σ1V ⊤∇σ2. (15)

Substituting (15) in (14), the HJB approximation error can
be written as∫ T

t−T
e−µ(s−t+T ) [Qz(z) +U(u)] ds

+ e−µTD⊤σ(z(t))−D⊤σ(z(t− T )) ≡ εB ,

(16)

where, εB = ε(z(t− T ))− e−µT ε(z(t)).
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On substituting (12) and (13) into (11), and doing a few
mathematical operations, the approximated HJB equation for
tracking is obtained as

Qz(z)− µD⊤σ(V ⊤σ(z)) +D⊤∇σ1V ⊤∇σ2Faug(z)

− 1

4
D⊤∇σ1V ⊤∇σ2 ∧∇σ⊤

2 V∇σ⊤
1 D + ϵHJB = 0,

(17)

where ∧ = Gaug(z)R
−1Gaug(z)

⊤ > 0. Since the target
weights, D and V , are unknown, approximate (12), and (13)
as

Ĵ(z) = D̂⊤σ(V̂ ⊤σ(z)), (18)

∇Ĵ(z) = D̂⊤∇σ̂1V̂ ⊤∇σ2, (19)

where D̂, V̂ are the estimated weights for the output and hid-
den layer respectively and σ̂1 = σ(V̂ ⊤σ(z)). The estimated
control input can be thus represented as

û = −1

2
R−1G⊤

aug(z)D̂
⊤∇σ̂1V̂

⊤∇σ2. (20)

Next the following assumption is needed.
Assumption 3: The target weights D,V and

σ(z), σ̂1(z),∇σ(z),∇σ̂1, ϵ(z) and ∇ϵ(z) are bounded such
that ∥D∥ ≤ Dn, ∥V ∥ ≤ Vn, where Dn, Vn are unknown
constants, ∥σ(z)∥ ≤ bσ, ∥σ̂1(z)∥ ≤ bσ1, ∥∇σ(z)∥ ≤
b∇σ, ∥ϵ(z)∥ ≤ bϵ, and ∥∇ϵ(z)∥ ≤ b∇ϵ [6].

Remark 1: The augmented approach requires the knowl-
edge of only the control input matrix Gaug to calculate û.
Because the control coefficient matrix is unknown according
to equations (1) and (4), an identifier will be used.

To move on, using (18), (19) in (16), the instantaneous
HJB error can be represented as∫ T

t−T
e−µ[s−t+T ) [Qz(z) +U(û)] ds+ e−µT D̂⊤σ̂1 (zt)

− D̂⊤σ̂1 (zt−T ) ≡ ε̂B ,
(21)

with T must be chosen as small as possible in order to
maintain the equivalence between (5) and (21) [6]. Replace
û in U(u) to get U(û) and rewrite (21) as

ε̂B ≡
∫ T

t−T
e−µ[s−t+T ) [Qz(z) +U(û)] ds+ D̂∆σ̂1, (22)

where σ̂1 = σ(V̂ ⊤σ(z)), ∆σ̂1 = σ̂1(z1) − σ̂1(zt−T ). Next,
define D̃ = D − D̂ as the weight estimation error. The
instantaneous HJB error [6] can be obtained as

ε̂B = D⊤σ1(zt−T )− e−µD⊤σ1(zt)−∆ϵ(z)

+ e−µD̂⊤σ̂1(zt)− D̂⊤σ̂1(zt−T ),
(23)

Simplifying HJB error in (23) in terms of weight estimation
error by using Taylor series expansion [9] to get

ε̂B = −D̃⊤σ̂1(z)− D̂⊤∇σ̂1Ṽ ⊤σ2(z)− D̃⊤σ̂1(zt−T )

− D̂⊤∇σ̂1(zt−T )Ṽ ⊤σ2(zt−T ) + w −∆ϵ(z),
(24)

where w denotes the higher order terms of the Taylor series,
w ≤ c1 + c2∥Ṽ ∥, where c1, p2 > 0, σ2(z) = σ(z), the

bound for ∆ϵ(z) = e−µT ϵ(z(t)) − ϵ(z(t − T )) is given
by ∥∆ϵ(z)∥ ≤ ϵmax. Next, an identifier to approximate
the unknown Gaug is introduced that is needed for optimal
control input.

A. NN identifier

An identifier is utilized to develop the estimated control
coefficient matrix, denoted as ˆGaug , in this section. The
actual control coefficient matrix Gaug is replaced by the
estimated control matrix ˆGaug to obtain the estimated control
policy. The reconstruction error of the proposed NN identifier
is considered to be bounded as a function of state vector.
Define

ż(t) =

[
Faug(z(t)) 0

0 Gaug(z(t))

]
×

[
1n
u(t)

]
.

(25)

The augmented control input is now defined as ū =

[
1
u(t)

]
,

the function approximation property of the NN can be used
to represent the nonlinear system on a compact set as
Faug (z) = V ⊤

F σF (z) + εF(z), Gaug(z) = V ⊤
G1
σG1

(z) +

εG1
(z), VF ∈ Rl×n, VG1

∈ Rl×n represents the target NN
weight matrices and σF (z) ∈ Rl, σG1(z) ∈ Rl×m represent
the activation functions, and εF ∈ Rn, εG1 ∈ Rn×m, are the
NN reconstruction errors, respectively. Now, we can write

ż(t) =

[
VF
VG1

]⊤ [
σF(z) 0
0 σG1

(z)

]
ū (26)

One can write (26) as follows

ż(t) =W⊤σ(ξ)ū+ εI(z), (27)

where W =
[
V ⊤
F V ⊤

G1

]⊤ ∈ R2l×n are the augmented NN
identifier weights and σ(ξ) = diag

{
σF (z) , σG1(z)

}
repre-

sents the augmented activation function for NN identifier.
The definition of the NN identifier reconstruction error εI(z)
is εI(z) = (εF(z)+εG(z)u). Next the following assumption
is stated.

Assumption 4 ([12]): The reconstruction error of the
single-layer NN identifier is bounded above such that
∥εI(z)∥2 ≤ b0∥z∥2 and ∥W∥ ≤Wn.

Remark 2: Because εI(z) depends on input u(t) and the
system state z(t), therefore, it is assumed that it is bounded
by the norm of the state vector unlike [13], where εI(z) is
bounded by a constant value. One can employ a MNN for
the identifier similar to the controller whereas the stability
analysis will be more involved.

Since the augmented activation function σ(ξ) of the NN
identifier is known, for an accurate approximation of the non-
linear system dynamics, which will be utilized to calculate
the control input coefficient matrix, a suitable weight update
law for the NN weight matrix W must be derived. Define
the dynamics of the NN identifier as

˙̂z(t) = Ŵ⊤σ(ξ)ū+K(z − ẑ), (28)

where ẑ(t) ∈ Rn represents the estimator state, K ∈ Rn×n
is a constant gain matrix with the state estimation error given
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by
ei = z − ẑ. (29)

One can write the dynamics of the state estimation error as

ėi = −Kei + W̃σ(ξ)ū+ εI(z), (30)

where W̃ = W − Ŵ denotes the identifier NN weight
estimation error. The NN identifier weight update law be
given by

˙̂
W = −αwŴ + σ(ξ)ūe⊤i , (31)

where ei is the state estimation error, ū is the augmented
control input vector, and αw > 0 is a tuning parameter.

The next subsection demonstrates how to obtain the weight
update law for the critic MNN using SVD.

B. SVD-based critic NN weight tuning

A novel SVD-based technique with an exploration feature
has been developed. The approach entails modifying the
singular values of the gradient by adding a small amount of
random noise to prevent gradient instability. The proposed
method is designed to ensure the stability of the gradient.

Define the SVD of the NN activation function gradient,
which is a function of time, defined as ∇σ(z) = PSD⊤ =
A. The modified SVD, denoted by Āi, is obtained as

Āi = PSD⊤ +Pe0ID
⊤, (32)

The above equation (32) introduces the concept of adding
exploration noise to the singular values of the gradient. In
this equation, e0 represents a small amount of random noise
added to the singular values, while the right and left time-
varying singular vectors remain unchanged. The input to the
activation function is denoted by z, and I is an identity
matrix with the same dimension as S. By adding exploration
noise with singular values of the gradient, we can avoid
vanishing gradient and saddle points, and improve learning
in MNNs. Additionally, note that the SVD of NN gradient
method can be used to extend this development to n-layer
NN.

By utilizing the improved SVD-based direct error driven
learning scheme to minimize the instantaneous HJB error
(24), the following theorem is stated.

Theorem 1: Consider the system (1), augmented system
dynamics (4), the cost function (5), let u0 be an initial
stabilizing control policy. Let SVD based critic NN weight
update laws and the the estimated optimal control input,
respectively, be given by

˙̂
D = β1

Ā1(
1 + Ā⊤

1 Ā1

) ε̂⊤B − Ā2(V̂
⊤Xt)

⊤V̂ ⊤

+ Ā3(V̂
⊤Xt−T )

⊤V̂ ⊤ − c0D̂,

(33)

˙̂
V = β2

Ā5

(1 + ∥Ā5∥2)
ε̂⊤B −Xt(Ā2D̂D̂

⊤)⊤

+Xt−T (Ā
⊤
3 D̂D̂

⊤)⊤ − c1V̂ ,

(34)

û = −1

2
R−1Ĝ⊤

aug(z)D̂
⊤Ā2V̂

⊤Ā4, (35)

where P2S2D2 = ∇σ11, P1S1D1 = ∆σ11, Ā1 =
P1S1D1 + P1γ1D1. Ā2 = P2S2D2 + P2γ2D2 Ā3 =
P3S3D3 + P3γ3D3 and Ā4 = P4S4D4 + P4γ4D4, where
P1,D1,P2,D2,P3,D3, P4,D4 are right and left singular
vectors and S1,S2,S3,S4 are the matrices containing the
singular values of ∆σ̂11,∇σ̂11,∇σ̂12,∇σ̂21 respectively and
γ1, γ2, γ3, γ4 are the random noise added to singular values,
c0, c1 are the design parameters.

Let Assumptions 1 through 4 be satisfied with u0 being
an initial stabilizing policy, and the input be persistently
exciting through the addition of exploration noise, the over-
all closed-loop system will remain uniformly ultimately
bounded (UUB). Moreover, the estimated control policy will
be bounded closely to the optimal one with the bounds given
by

∥z∥ >

√
K01

K̄1
or∥ei∥ >

√
K̄01

K̄6

or∥D̃∥ >

√
K01

K̄2
+

K̄4

2K̄2
or∥Ṽ ∥ >

√
K01

K̄3
+

K̄5

2K̄3

or∥W̃∥ >

√
K̄01

K̄7
+

K8

2K̄7
.

(36)
where K01 =

K̄2
4

2K̄2
2

+
K̄2

5

2K̄2
3

+
K2

8

2K̄2
7

and K̄i, i = 1 . . . 8 are
constant coefficients.

Remark 3: The proposed MNN utilizes normalized gra-
dient descent and SVD to obtain weight update laws. The
proposed SVD approach helps to mitigate the impact of
unstable and vanishing gradients on the NN performance and
ensures more stable learning.
Next, the LL for optimal tracking is introduced.

C. Lifelong learning

The offline EWC method can quite successfully mitigate
catastrophic forgetting in practice [9]. However, in order
to mitigate the catastrophic forgetting and explosion of
gradients simultaneously in EWC, a LL technique called
weight velocity attenuation (WVA) [11] was developed.
However it is limited to offline scenarios, and therefore in
this work a novel online LL technique is proposed by using
HJB error as targets are unavailable for online control. This
technique mitigates catastrophic forgetting by incorporating
a regularizer term into the loss function given by

L(D̂, V̂ ) ≈ LB +
λ1
2
ψ̄Dj

(
D̂ − D̂∗

A,i

)2

+
λ2
2
ψ̄vi

(
V̂ − V̂ ∗

A,i

)2

,

(37)

where LB = 1
2 ε̂

2
B is the loss function for the current task B,

ψ̄Dj = diag{ ψDi

ψDi+1}, ψ̄vi = diag{ ψvi

ψvi+1} i=1. . . n, ψDi and
ψvi, are the significance of i-th weight of NN after learning
to prior tasks and ψ̄Dj , ψ̄vj where j denotes the task, are
estimated same as diagonal FIM [8] which is obtained by
using HJB error in contrast to [8],[11]. The D̂∗

Ai, V̂
∗
A,i, are

the optimal weights of NN when performing on task A, and
αw, αv are the NN learning rate. The significance of the

3398

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on August 29,2023 at 13:14:24 UTC from IEEE Xplore.  Restrictions apply. 



weight shows how much the change of the weights D̂, V̂ ,
will be penalized when performing the next task. The FIM
for each task at each layer is found as follows. Calculate the
log-likelihood function as

ℓ(D̂, z) = log p(ε̂B |D̂, z) (38)

where ε̂B is the estimated HJB error and p(ε̂B |D̂, z) is the
probability density function of the HJB error given the input
and the weights. Obtain the Jacobian matrix as

J(D̂, z) =
∂ℓ(D̂, z)

∂D̂
(39)

where ∂ℓ(D̂,z)

∂D̂
denotes the partial derivative of the log-

likelihood function with respect to the weights. Generate the
estimation of FIM as

F = E{J(D̂, z) · J(D̂, z)⊤} (40)

where E denotes the expectation of the product of the
Jacobian matrix and its transpose. The diagonal FIM is given
by

ψ̄Dj = diag(F ) (41)

where ψ̄Dj represents the diagonal FIM for weight D̂ given
the task j. In a similar way the FIM can be calculated for
the weight matrix V̂ in the input layer.

Next, we can derive the additional LL term in the weight
update law by using the normalized gradient descent as

− ∂

∂D̂
(L(D̂, V̂ )) =

− β1

(
∂E

∂D̂

)
− λ1ψ̄Dj(D̂ − D̂∗

A,i),

(42)

− ∂

∂V̂
(L(D̂, V̂ )) =

− β2

(
∂E

∂V̂

)
− λ2ψ̄vj(V̂ − V̂ ∗

A,i),

(43)

where the first term of (42), (43) can be obtained from
Theorem 1. For LL, the concepts from (42) are combined
with the previously defined update laws from Theorem 1.
The following theorem is stated.

Theorem 2: Consider the hypothesis stated in Theorem 1,
with the LIRL critic MNN tuning laws given by

˙̂
D = β1

Ā1(
1 + Ā⊤

1 Ā1

) ε̂⊤B − Ā2(V̂
⊤Xt)

⊤V̂ ⊤ − c0D̂

+ Ā3(V̂
⊤Xt−T )

⊤V̂ ⊤ − αdλdψ̄Dj(D̂ − D̂∗
A,i),

(44)

˙̂
V = β2

Ā5

(1 + ∥Ā5∥2)
ε̂⊤B −Xt(Ā2D̂D̂

⊤)⊤ − c1V̂

+Xt−T (Ā
⊤
3 D̂D̂

⊤)⊤ − αvλvψ̄vj(V̂ − V̂ ∗
A,i),

(45)

where λd, λv are the design parameters, β1, β2, αd, αv are the
NN learning rates, ψDi, ψvi are the significance of weights
after each task, for weights D̂ and V̂ respectively, D̂, V̂ are
the weights to be optimized, and D̂∗

A,i, V̂
∗
A,i are the optimized

weights from the previously learned task, if Assumption 1 to,
4 holds for each task, then e, z, x, D̃, Ṽ are UUB with the

bound K̄ = K01 +Kreg where K01, which is the bound in
the absence of LL, and Kreg, which accounts for the effect
of LL.

Remark 4: By referring to equation (42), it can be ob-
served that as the importance of the weights increases,
ψDi may tend towards infinity. This occurrence results in
ψDi

ψDi+1 approaching 1, effectively preventing the gradient
from exploding.

Remark 5: The first part of the NN weight update laws in
Theorem 2 is same as Theorem 1 whereas the second part
includes regularization terms resulting from LL.
Next, the simulation results for proposed MNN based IRL
with and without LL are presented.

IV. SIMULATION RESULTS

We consider a two-link robotic manipulator as an example
to illustrate the effectiveness of the proposed method. The
dynamics of the robot manipulator are described by the
following equations:

ẋ = f(x) + g(x)u, (46)

where x = [q1, q2, q̇1, q̇2]
⊤ is the state vector, and

f =

[
x3, x4,

(
M−1(−Vm −Fd)

[
x3
x4

]
− Fs

)⊤
]⊤

,

g =
[
[[0, 0]⊤, [0, 0]⊤, (M−1)⊤]⊤

]
,

M =

[
m1 + 2m3p2 m2 +m3p2
m2 +m3p2 m2

]
,

Vm =

[
−m3b2q̇2 −m3b2(q̇1 + q̇2)
m3b2q̇1 0

]
,

Fd = diag[4.21, 2.23],
(47)

m1 = 3,m2 = 0.26,m3 = 0.345, p2 = cos(q2), b2 = sin(q2).

The reference trajectories are defined as xd =
[cos(t), cos(t),− sin(t),− sin(t)]⊤. For the performance in-
dex defined in equation (5), we chose penalty matrices of
Q = diag[1, 1, 1, 1], R = diag[1, 1], and µ = 0.13. The NN
used in this experiment had a hidden layer with 10 neurons,
and the weights were initialized randomly from a uniform
distribution over the range [0, 1]. We employed the sigmoid
function as the activation function. The initial state vector
was set to [0.3; 1.6; 0; 0]. The learning gains were selected
as follows: e0 = 0.24, λ = 0.46, c1 = 0.16, αv = 0.202,
αd = 0.36, αz = 0.14, and γ1,2,3,4 = 0.12.

The weight update laws based on LIRL from Theorem 2
are then utilized to create the control policy for a multitask
environment. In this paper, we have altered the mass of the
robotic manipulator after each completed task, simulating a
scenario where the manipulator picks up objects or performs
tasks that alter its mass value. We have only considered a
two-task scenario. The mass matrix for task 1 is selected
as m1 = 3.0,m2 = 0.26,m3 = 0.345, while for task 2
it is m1 = 8.5,m2 = 3.6, and m3 = 3.8,. The state and
reference trajectories, and tracking errors are shown in Figs.
1 through 2. We observer that the tracking in the case of
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LIRL-based MNN control scheme is better when compared
with the single-layer RVFL NN method [14] without LL.
Fig. 3 depicts the 3-D plot of optimal value function and
cumulative cost in the multitask scenario. The cumulative
cost is lower with proposed LIRL scheme over RVFL NN
without LL.
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Fig. 1: Actual and reference trajectories using single-layer
RVFL NN and proposed LIRL-based MNN methods.
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Fig. 2: Tracking errors using RVFL NN and LIRL-based
MNN methods.
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Fig. 3: Optimal value function and the cumulative cost using
RVFL NN and LIRL-based MNN methods.
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Fig. 4: Control input using RVFL NN and LIRL-based MNN.

V. CONCLUSION

This paper proposed a continual learning based optimal
tracking technique using SVD based MNNs. The SVD
based MNNs approach for optimal adaptive tracking scheme
enhances the performance significantly while overcoming
the vanishing action function gradient in MNNs. Despite
enhanced performance, with multitask system, incorporating
WVA to the critic weight update laws promoted LL by ensur-
ing knowledge transfer between tasks while simultaneously
reducing possible explosion gradient. Finally, simulation
results by using a two-link robot manipulator system concur
theoretical claims in a multitask environment.
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