2,814 research outputs found

    Progress in integrated-circuit horn antennas for receiver applications. Part 2: A 90 GHz quasi-integrated horn antenna receiver

    Get PDF
    A receiver belonging to the family of integrated planar receivers has been developed at 90 GHz. It consists of a planar Schottky-diode placed at the feed of a dipole-probe suspended inside an integrated horn antenna. The measured planar mixer single-sideband conversion loss at 91.2 GHz (LO) with a 200 MHz IF frequency is 8.3dB plus or minus 0.3dB. The low cost of fabrication and simplicity of this design makes it ideal for millimeter and submillimeter-wave receivers

    Terahertz Monolithic Integrated Circuits (TMICs) Array Antenna Technology On GaN-on-Low Resistivity Silicon Substrates

    Get PDF
    In this paper, we have demonstrated a viable microstrip array patch antenna technology for the first time on GaN-on-low resistivity silicon (LR-Si) substrates (ρ <; 40 Ω.cm) at H-band frequencies (220-325 GHz). The developed technology is compatible with standard MMIC technology with no requirement for high temperature processes. To mitigate the losses presented by the substrate and to enhance the performance of the integrated array antenna at THz frequencies, the driven patch is shielded by silicon nitride and gold layer in addition to a layer of benzocyclobutene (BCB). The demonstrated 4×1 array integrated antenna showed a measured resonance frequency in agreement with our simulation at 0.27 THz; a measured S11 as low as -41 dB was obtained. A directivity, gain and radiation efficiency of 11.2 dB, 5.2 dB, and 20% respectively was observed from the 3D EM model for a 5 μm BCB inset. To the authors' knowledge, this is the first demonstration of a THz integrated microstrip array antenna for TMIC technology; this developed technology is promising for high performance III-V electronic material on low resistivity/high dielectric substrates

    Micromechanical tuning elements in a 620-GHz monolithic integrated circuit

    Get PDF
    While monolithic integrated-circuit technology promises a practical means for realizing reliable reproducible planar millimeter and submillimeter-wave circuits, conventional planar circuits do not allow for critical post-fabrication optimization of performance. A 620-GHz quasi-optical monolithic detector circuit is used here to demonstrate the performance of two integrated micromechanical planar tuning elements. This is the first reported demonstration of integrated micromechanical tuning at submillimeter wavelengths. The tuning elements, called sliding planar backshorts (SPBs), are used to adjust the electrical length of planar transmission-line tuning stubs to vary the power delivered between a substrate-lens coupled planar antenna and a thin-film bismuth detector over a range of nearly 15 dB. The circuit performance agrees with theoretical calculations and microwave measurements of a -0.06-dB reflection coefficient made for a scale model of the integrated tuners. The demonstrated tuning range for the SPB tuners indicates that they can be valuable for characterizing components in developmental circuits and for optimizing the in-use performance of various millimeter and submillimeter-wave integrated circuits

    Building an end user focused THz based ultra high bandwidth wireless access network: The TERAPOD approach

    Get PDF
    The TERAPOD project aims to investigate and demonstrate the feasibility of ultra high bandwidth wireless access networks operating in the Terahertz (THz) band. The proposed TERAPOD THz communication system will be developed, driven by end user usage scenario requirements and will be demonstrated within a first adopter operational setting of a Data Centre. In this article, we define the full communications stack approach that will be taken in TERAPOD, highlighting the specific challenges and aimed innovations that are targeted

    Submillimeter wave detection with superconducting tunnel diodes

    Get PDF
    Superconductor-Insulator-Superconductor (SIS) diodes are the detector elements in the most sensitive heterodyne receivers available from 100 to 500 GHz. SIS mixers are the front end of radio astronomical systems around the world. SIS mixer technology is being extended to 1 THz and higher frequencies for eventual use on spaceborne astronomical experiments. Here is a short review of submillimeter SIS mixers. The role of impedance matching in the proper design of an SIS mixer is described. A variety of methods for achieving good impedance match at submillimeter frequencies are presented. The experimental state of the submillimeter SIS mixer art is described and summarized

    Broadband Bow-Tie Slot Antenna with Tuning Stub for Resonant Tunnelling Diode Oscillators with Novel Configuration for Substrate Effects Suppression

    Get PDF
    Radiation from antennas integrated with InP-based resonant tunnelling diode (RTD) oscillators is usually degraded because of the effects of the large dielectric constant substrate. The common solution has been to use hemispherical lenses to extract the signal from the backside of the substrate. In this paper we present a broadband bow-tie slot antenna with tuning stub which is diced and mounted on a ground plane to alleviate the substrate effects. Here, the large dielectric constant substrate around the antenna conductor is removed. In addition, the ground plane underneath the diced substrate acts as a reflector and, ultimately, the antenna radiates to air-side direction. The antenna was designed and fabricated using photolithography techniques to offer wide bandwidth (return loss S11 <-10dB) between 200-350 GHz on semi-insulating InP substrate with dielectric constant of ϵr = 12.56. Simulated and measured bandwidth almost extends the frequency range 230-325 GHz. Simulations shows air-side radiation pattern, an antenna gain of around 11 dB at 290 GHz and 98% radiation efficiency

    Millimeter Wave Substrate Integrated Waveguide Antennas: Design and Fabrication Analysis

    Get PDF
    The paper presents a new concept in antenna design, whereby a photo-imageable thick-film process is used to integrate a waveguide antenna within a multilayer structure. This has yielded a very compact, high performance antenna working at high millimeter-wave (mm-wave) frequencies, with a high degree of repeatability and reliability in antenna construction. Theoretical and experimental results for 70 GHz mm-wave integrated antennas, fabricated using the new technique are presented. The antennas were formed from miniature slotted waveguide arrays using up to 18 layers of photo-imageable material. To enhance the electrical performance a novel folded waveguide array was also investigated. The fabrication process is analysed in detail and the critical issues involved in the fabrication cycle are discussed. The losses in the substrate integrated waveguide have been calculated. The performance of the new integrated antenna is compared to conventional metallic, air-filled waveguide antennas, and also to conventional microstrip antenna arrays operating at the same frequencies

    Passive Components Technology for THz-Monolithic Integrated Circuits (THz-MIC)

    Get PDF
    In this work, a viable passive components and transmission media technology is presented for THz-Monolithic Integrated Circuits (THz-MIC). The developed technology is based on shielded microstrip (S-MS) employing a standard monolithic microwave integrated circuit compatible process. The S-MS transmission media uses a 5-μm layer of benzocyclobutene (BCB) on shielded metalized ground plates avoiding any substrate coupling effects. An insertion loss of less than 3 dB/mm was achieved for frequencies up to 750 GHz. To prove the effectiveness of the technology, a variety of test structures, passive components and antennas have been design, fabricated and characterized. High Q performance was demonstrated making such technology a strong candidate for future THz-MIC technology for many applications such as radar, communications, imaging and sensing
    corecore