397 research outputs found

    Improved bearing estimation in ocean by nonlinear wavelet denoising under non-Gaussian noise conditions

    Get PDF
    Bearing estimation of underwater acoustic sources is an important aspect of passive localization in the ocean. The performance of all bearing estimation techniques degrades under conditions of low signal-to-noise ratio (SNR) at the sensor array. The degradation may be arrested by denoising the array data before performing the task of bearing estimation. In the last few years, there has been considerable progress in the use of the wavelet transform for denoising signals. It is known that the traditional wavelet transform, which is a linear transformation, can be used for denoising signals in Gaussian noise; but this method is not suitable if the noise is strongly non-Gaussian. Statistical measurements of ocean acoustic ambient noise data indicate that the noise may have a significantly non-Gaussian heavy-tailed distribution in some environments. In this work, we have explored the possibility of employing nonlinear wavelet denoising [1, 2], a robust technique based on median interpolation, to improve the performance of bearing estimation techniques in ocean in a strongly non-Gaussian noise environment. We propose the application of nonlinear wavelet denoising to the noisy signal at each sensor in the array to boost the SNR before performing bearing estimation by known techniques such as MUSIC and Subspace Intersection Method [3]. Simulation results are presented to show that denoising leads to a significant reduction in the mean square errors (MSE) of the estimators, and enhancement of resolution of closely spaced sources

    Improved localization of underwater acoustic sources by nonlinear wavelet denoising under non-Gaussian noise conditions

    Get PDF
    Bearing estimation of underwater acoustic sources is an important aspect of passive localization in the ocean. The performance of all bearing estimation techniques degrades under conditions of low signal-to-noise ratio (SNR) at the sensor array. The degradation may be arrested by denoising the array data before performing the task of bearing estimation. In the last few years, there has been considerable progress in the use of the wavelet transform for denoising signals. It is known that the traditionalwavelet transform, which is a linear transformation, can be used for denoising signals in Gaussian noise; but this method is not suitable if the noise is strongly non-Gaussian. Statistical measurements of ocean acoustic ambient noise data indicate that the noise may have a significantly non-Gaussian heavy-tailed distribution in some environments. In this work, we have explored the possibility of employing nonlinear wavelet denoising [1, 2], a robust technique based on median interpolation, to improve the performance of bearing estimation techniques in ocean in a strongly non-Gaussian noise environment. We propose the application of nonlinear wavelet denoising to the noisy signal at each sensor in the array to boost the SNR before performing bearing estimation by known techniques such as MUSIC and Subspace Intersection Method [3]. Simulation results are presented to show that denoising leads to a significant reduction in the mean square errors (MSE) of the estimators, and enhancement of resolution of closely spaced sources

    Three-Dimensional Passive Source Localisation using the Flank Array of an Autonomous Underwater Vehicle in Shallow Water

    Get PDF
    Researchers have become interested in autonomous underwater vehicles equipped with various kinds of sonar systems that can perform many of underwater tasks, which is encouraged by the potential benefits of cost reduction and flexible deployment. This paper proposes an approach to three-dimensional passive source localisation with the flank array of an autonomous underwater vehicle in shallow water. The approach is developed based on matched-field processing for the likelihood of passive source localisation in the shallow water environment. Inter-position processing is also used for the improved localisation performance and the enhanced stability of the estimation process against the lack of spatial gain due to the small physical size of the flank array. The proposed approach is presented and validated through simulation and experimental data. The results illustrate the localisation performance at different signal-to-noise ratios and demonstrate the build up over time of the positional parameters of the estimated source as the autonomous underwater vehicle cruises at a low speed along a straight line at a constant depth.Defence Science Journal, 2013, 63(3), pp.323-330, DOI:http://dx.doi.org/10.14429/dsj.63.301

    Passive Source Localization Using Compressively Sensed Towed Array

    Get PDF
    The objective of this work is to estimate the sparse angular power spectrum using a towed acoustic pressure sensor (APS) array. In a passive towed array sonar, any reduction in the analog sensor signal conditioning receiver hardware housed inside the array tube, significantly improves the signal integrity and hence the localization performance. In this paper, a novel sparse acoustic pressure sensor (SAPS) array architecture is proposed to estimate the direction of arrival (DOA) of multiple acoustic sources. Bearing localization is effectively achieved by customizing the Capons spatial filter algorithm to suit the SAPS array architecture. Apart from the Monte Carlo simulations, the acoustic performance of the SAPS array with compressively sensed minimum variance distortionless response (CS-MVDR) filter is demonstrated using a real passive towed array data. The proposed sparse towed array architecture promises a significant reduction in the analog signal acquisition receiver hardware, transmission data rate, number of snapshots and software complexity.Defence Science Journal, 2013, 63(6), pp.630-635, DOI:http://dx.doi.org/10.14429/dsj.63.576

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques

    Cooperative Localization in Mobile Underwater Acoustic Sensor Networks

    Get PDF
    Die großflächige Erkundung und Überwachung von Tiefseegebieten gewinnt mehr und mehr an Bedeutung für Industrie und Wissenschaft. Diese schwer zugänglichen Areale in der Tiefsee können nur mittels Teams unbemannter Tauchbote effizient erkundet werden. Aufgrund der hohen Kosten, war bisher ein Einsatz von mehreren autonomen Unterwasserfahrzeugen (AUV) wirtschaftlich undenkbar, wodurch AUV-Teams nur in Simulationen erforscht werden konnten. In den letzten Jahren konnte jedoch eine Entwicklung hin zu günstigeren und robusteren AUVs beobachtet werden. Somit wird der Einsatz von AUV-Teams in Zukunft zu einer realen Option. Die wachsende Nachfrage nach Technologien zur Unterwasseraufklärung und Überwachung konnte diese Entwicklung noch zusätzlich beschleunigen. Eine der größten technischen Hürden für tief tauchende AUVs ist die Unterwasserlokalisierug. Satelitengestützte Navigation ist in der Tiefe nicht möglich, da Radiowellen bereits nach wenigen Metern im Wasser stark an Intensität verlieren. Daher müssen neue Ansätze für die Unterwasserlokalisierung entwickelt werden die sich auch für Fahrzeugenverbände skalieren lassen. Der Einsatz von AUV-Teams ermöglicht nicht nur völlig neue Möglichkeiten der Kooperation, sondern erlaubt auch jedem einzelnen AUV von den Navigationsdaten der anderen Fahrzeuge im Verband zu profitieren, um die eigene Lokalisierung zu verbessern. In dieser Arbeit wird ein kooperativer Lokalisierungsansatz vorgestellt, welcher auf dem Nachrichtenaustausch durch akustische Ultra-Short Base-Line (USBL) Modems basiert. Ein akustisches Modem ermöglicht die Übertragung von Datenpaketen im Wasser, wärend ein USBL-Sensor die Richtung einer akustischen Quelle bestimmen kann. Durch die Kombination von Modem und Sensor entsteht ein wichtiges Messinstrument für die Unterwasserlokalisierung. Wenn ein Fahrzeug ein Datenpaket mit seiner eignen Position aussendet, können andere Fahrzeuge mit einem USBL-Modem diese Nachricht empfangen. In Verbindung mit der Richtungsmessung zur Quelle, können diese Daten von einem Empfangenden AUV verwendet werden, um seine eigene Positionsschatzung zu verbessern. Diese Arbeit schlägt einen Ansatz zur Fusionierung der empfangenen Nachricht mit der Richtungsmessung vor, welcher auch die jeweiligen Messungenauigkeiten berücksichtigt. Um die Messungenauigkeit des komplexen USBL-Sensors bestimmen zu können, wurde zudem ein detailliertes Sensormodell entwickelt. Zunächst wurden existierende Ansätze zur kooperativen Lokalisierung (CL) untersucht, um daraus eine Liste von erwünschten Eigenschaften für eine CL abzuleiten. Darauf aufbauend wurde der Deep-Sea Network Lokalisation (DNL) Ansatz entwickelt. Bei DNL handelt es sich um eine CL Methode, bei der die Skalierbarkeit sowie die praktische Anwendbarkeit im Fokus stehen. DNL ist als eine Zwischenschicht konzipiert, welche USBL-Modem und Navigationssystem miteinander verbindet. Es werden dabei Messwerte und Kommunikationsdaten des USBL zu einer Standortbestimmung inklusive Richtungsschätzung fusioniert und an das Navigationssystem weiter geleitet, ähnlich einem GPS-Sensor. Die Funktionalität von USBL-Modell und DNL konnten evaluiert werden anhand von Messdaten aus Seeerprobungen in der Ostsee sowie im Mittelatlantik. Die Qualität einer CL hangt häufig von vielen unterschiedlichen Faktoren ab. Die Netzwerktopologie muss genauso berücksichtig werden wie die Lokalisierungsfähigkeiten jedes einzelnen Teilnehmers. Auch das Kommunikationsverhalten der einzelnen Teilnehmer bestimmt, welche Informationen im Netzwerk vorhanden sind und hat somit einen starken Einfluss auf die CL. Um diese Einflussfaktoren zu untersuchen, wurden eine Reihe von Szenarien simuliert, in denen Kommunikationsverhalten und Netzwerktopologie für eine Gruppe von AUVs variiert wurden. In diesen Experimenten wurden die AUVs durch ein Oberflächenfahrzeug unterstützt, welches seine geo-referenzierte Position über DNL an die getauchten Fahrzeuge weiter leitete. Anhand der untersuchten Topologie können die Experimente eingeteilt werden in Single-Hop und Multi-Hop. Single-Hop bedeutet, dass jedes AUV sich in der Sendereichweite des Oberflächenfahrzeugs befindet und dessen Positionsdaten auf direktem Wege erhält. Wie die Ergebnisse der Single-Hop Experimente zeigen, kann der Lokalisierungsfehler der AUVs eingegrenzt werden, wenn man DNL verwendet. Dabei korreliert der Lokalisierungsfehler mit der kombinierten Ungenauigkeit von USBL-Messung und Oberflächenfahrzeugposition. Bei den Multi-Hop Experimenten wurde die Topologie so geändert, dass sich nur eines der AUVs in direkter Sendereichweite des Oberflächenfahrzeugs befindet. Dieses AUV verbessert seine Position mit den empfangen Daten des Oberflächenfahrzeugs und sendet wiederum seine verbesserte Position an die anderen AUVs. Auch hier konnte gezeigt werden, dass sich der Lokalisierungfehler der Gruppe mit DNL einschränken lässt. Ändert man nun das Schema der Kommunikation so, dass alle AUVs zyklisch ihre Position senden, zeigte sich eine Verschlechterung der Lokalisierungsqualität der Gruppe. Dieses unerwartet Ergebnis konnte auf einen Teil des DNL-Algorithmus zurück geführt werden. Da die verwendete USBL-Klasse nur die Richtung eines Signals misst, nicht jedoch die Entfernung zum Sender, wird in der DNL-Schicht eine Entfernungsschatzung vorgenommen. Wenn die Kommunikation nicht streng unidirektional ist, entsteht eine Ruckkopplungsschleife, was zu fehlerhaften Entfernungsschatzungen führt. Im letzten Experiment wird gezeigt wie sich dieses Problem vermeiden lasst, mithilfe einer relativ neue USBL-Klasse, die sowohl Richtung als auch Entfernung zum Sender misst. Die zwei wesentlichen Beiträge dieser Arbeit sind das USBL-Model zum einen und zum Anderen, der neue kooperative Lokalisierungsansatz DNL. Mithilfe des Sensormodels lassen sich nicht nur Messabweichungen einer USBL-Messung bestimmen, es kann auch dazu genutzt werden, einige Fehlereinflüsse zu korrigieren. Mit DNL wurde eine skalierbare CL-Methode entwickelt, die sich gut für den den Einsatz bei mobilen Unterwassersensornetzwerken eignet. Durch das Konzept als Zwischenschicht, lasst sich DNL einfach in bestehende Navigationslösungen integrieren, um die Langzeitstabilität der Navigation für große Verbände von tiefgetauchten Fahrzeugen zu gewährleisten. Sowohl USBL-Model als auch DNL sind dabei so ressourcenschonend, dass sie auf dem Computer eines Standard USBL laufen können, ohne die ursprüngliche Funktionalität einzuschränken, was den praktischen Einsatz zusätzlich vereinfacht

    An investigation into the detection of seafloor massive sulphides through sonar

    Get PDF
    M.Sc., Faculty of Science, University of the Witwatersrand, 2011Sea oor massive sulphides are deep sea mineral deposits currently being examined as a potential mining resource. Locating these deposits, which occur at depths in the order of 2km, is currently performed by expensive submersible sonar platforms as conventional sonar bathymetry products gathered by sea surface platforms do not achieve adequate spatial resolution. This document examines the use of so-called high resolution beamforming methods (such as MUSIC and ESPRIT) for sonar bathymetry, together with combinations of parameter estimation techniques, including techniques for full rank covariance matrix estimation and signal enumeration. These methods are tested for bathymetric pro le accuracy using simulated data, and compared to conventional bathymetric methods. It was found that high resolution methods achieved greater bathymetric accuracy and higher resolution than conventional beamforming. These methods were also robust in the presence of unwanted persistent signals and low signal to noise ratios

    Towed-array calibration

    Get PDF

    Performance bounds on matched-field methods for source localization and estimation of ocean environmental parameters

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2001Matched-field methods concern estimation of source location and/or ocean environmental parameters by exploiting full wave modeling of acoustic waveguide propagation. Typical estimation performance demonstrates two fundamental limitations. First, sidelobe ambiguities dominate the estimation at low signal-to-noise ratio (SNR), leading to a threshold performance behavior. Second, most matched-field algorithms show a strong sensitivity to environmental/system mismatch, introducing some biased estimates at high SNR. In this thesis, a quantitative approach for ambiguity analysis is developed so that different mainlobe and sidelobe error contributions can be compared at different SNR levels. Two large-error performance bounds, the Weiss-Weinstein bound (WWB) and Ziv-Zakai bound (ZZB), are derived for the attainable accuracy of matched-field methods. To include mismatch effects, a modified version of the ZZB is proposed. Performance analyses are implemented for source localization under a typical shallow water environment chosen from the Shallow Water Evaluation Cell Experiments (SWellEX). The performance predictions describe the simulations of the maximum likelihood estimator (MLE) well, including the mean square error in all SNR regions as well as the bias at high SNR. The threshold SNR and bias predictions are also verified by the SWellEX experimental data processing. These developments provide tools to better understand some fundamental behaviors in matched-field performance and provide benchmarks to which various ad hoc algorithms can be compared.Financial support for my research was provided by the Office of Naval Research and the WHOI Education Office

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    Mención Internacional en el título de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio Fernández Anta.- Vocal: Santiago Zazo Bell
    corecore