6,882 research outputs found

    Discriminative variable selection for clustering with the sparse Fisher-EM algorithm

    Full text link
    The interest in variable selection for clustering has increased recently due to the growing need in clustering high-dimensional data. Variable selection allows in particular to ease both the clustering and the interpretation of the results. Existing approaches have demonstrated the efficiency of variable selection for clustering but turn out to be either very time consuming or not sparse enough in high-dimensional spaces. This work proposes to perform a selection of the discriminative variables by introducing sparsity in the loading matrix of the Fisher-EM algorithm. This clustering method has been recently proposed for the simultaneous visualization and clustering of high-dimensional data. It is based on a latent mixture model which fits the data into a low-dimensional discriminative subspace. Three different approaches are proposed in this work to introduce sparsity in the orientation matrix of the discriminative subspace through â„“1\ell_{1}-type penalizations. Experimental comparisons with existing approaches on simulated and real-world data sets demonstrate the interest of the proposed methodology. An application to the segmentation of hyperspectral images of the planet Mars is also presented

    Learning Mixtures of Linear Classifiers

    Full text link
    We consider a discriminative learning (regression) problem, whereby the regression function is a convex combination of k linear classifiers. Existing approaches are based on the EM algorithm, or similar techniques, without provable guarantees. We develop a simple method based on spectral techniques and a `mirroring' trick, that discovers the subspace spanned by the classifiers' parameter vectors. Under a probabilistic assumption on the feature vector distribution, we prove that this approach has nearly optimal statistical efficiency

    The discriminative functional mixture model for a comparative analysis of bike sharing systems

    Get PDF
    Bike sharing systems (BSSs) have become a means of sustainable intermodal transport and are now proposed in many cities worldwide. Most BSSs also provide open access to their data, particularly to real-time status reports on their bike stations. The analysis of the mass of data generated by such systems is of particular interest to BSS providers to update system structures and policies. This work was motivated by interest in analyzing and comparing several European BSSs to identify common operating patterns in BSSs and to propose practical solutions to avoid potential issues. Our approach relies on the identification of common patterns between and within systems. To this end, a model-based clustering method, called FunFEM, for time series (or more generally functional data) is developed. It is based on a functional mixture model that allows the clustering of the data in a discriminative functional subspace. This model presents the advantage in this context to be parsimonious and to allow the visualization of the clustered systems. Numerical experiments confirm the good behavior of FunFEM, particularly compared to state-of-the-art methods. The application of FunFEM to BSS data from JCDecaux and the Transport for London Initiative allows us to identify 10 general patterns, including pathological ones, and to propose practical improvement strategies based on the system comparison. The visualization of the clustered data within the discriminative subspace turns out to be particularly informative regarding the system efficiency. The proposed methodology is implemented in a package for the R software, named funFEM, which is available on the CRAN. The package also provides a subset of the data analyzed in this work.Comment: Published at http://dx.doi.org/10.1214/15-AOAS861 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Parsimonious Mahalanobis Kernel for the Classification of High Dimensional Data

    Full text link
    The classification of high dimensional data with kernel methods is considered in this article. Exploit- ing the emptiness property of high dimensional spaces, a kernel based on the Mahalanobis distance is proposed. The computation of the Mahalanobis distance requires the inversion of a covariance matrix. In high dimensional spaces, the estimated covariance matrix is ill-conditioned and its inversion is unstable or impossible. Using a parsimonious statistical model, namely the High Dimensional Discriminant Analysis model, the specific signal and noise subspaces are estimated for each considered class making the inverse of the class specific covariance matrix explicit and stable, leading to the definition of a parsimonious Mahalanobis kernel. A SVM based framework is used for selecting the hyperparameters of the parsimonious Mahalanobis kernel by optimizing the so-called radius-margin bound. Experimental results on three high dimensional data sets show that the proposed kernel is suitable for classifying high dimensional data, providing better classification accuracies than the conventional Gaussian kernel
    • …
    corecore