441 research outputs found

    On the Caratheodory rank of polymatroid bases

    Full text link
    In this paper we prove that the Carath\'eodory rank of the set of bases of a (poly)matroid is upper bounded by the cardinality of the ground set.Comment: 7 page

    A note on forbidding clique immersions

    Full text link
    Robertson and Seymour proved that the relation of graph immersion is well-quasi-ordered for finite graphs. Their proof uses the results of graph minors theory. Surprisingly, there is a very short proof of the corresponding rough structure theorem for graphs without KtK_t-immersions; it is based on the Gomory-Hu theorem. The same proof also works to establish a rough structure theorem for Eulerian digraphs without K⃗t\vec{K}_t-immersions, where K⃗t\vec{K}_t denotes the bidirected complete digraph of order tt

    A note on the Minimum Norm Point algorithm

    Full text link
    We present a provably more efficient implementation of the Minimum Norm Point Algorithm conceived by Fujishige than the one presented in \cite{FUJI06}. The algorithm solves the minimization problem for a class of functions known as submodular. Many important functions, such as minimum cut in the graph, have the so called submodular property \cite{FUJI82}. It is known that the problem can also be efficiently solved in strongly polynomial time \cite{IWAT01}, however known theoretical bounds are far from being practical. We present an improved implementation of the algorithm, for which unfortunately no worst case bounds are know, but which performs very well in practice. With the modifications presented, the algorithm performs an order of magnitude faster for certain submodular functions

    Quantized VCG Mechanisms for Polymatroid Environments

    Full text link
    Many network resource allocation problems can be viewed as allocating a divisible resource, where the allocations are constrained to lie in a polymatroid. We consider market-based mechanisms for such problems. Though the Vickrey-Clarke-Groves (VCG) mechanism can provide the efficient allocation with strong incentive properties (namely dominant strategy incentive compatibility), its well-known high communication requirements can prevent it from being used. There have been a number of approaches for reducing the communication costs of VCG by weakening its incentive properties. Here, instead we take a different approach of reducing communication costs via quantization while maintaining VCG's dominant strategy incentive properties. The cost for this approach is a loss in efficiency which we characterize. We first consider quantizing the resource allocations so that agents need only submit a finite number of bids instead of full utility function. We subsequently consider quantizing the agent's bids

    The Euler circuit theorem for binary matroids

    Get PDF
    AbstractIt is proved that, if M is a binary matroid, then every cocircuit of M has even cardinality if and only if M can be obtained by contracting some other binary matroid M+ onto a single circuit. This is the natural analog of the Euler circuit theorem for graphs. It is also proved that every coloop-free matroid can be obtained by contracting some other matroid (not in general binary) onto a single circuit

    Excluded minors for the class of split matroids

    Get PDF
    The class of split matroids arises by putting conditions on the system of split hyperplanes of the matroid base polytope. It can alternatively be defined in terms of structural properties of the matroid. We use this structural description to give an excluded minor characterisation of the class

    The canonical order and optimization problems

    Get PDF
    Using the partial order technique, we describe a subclass of objective functions taking their optimum at the greedy point of a given feasible polyhedron in R"

    Data Exchange Problem with Helpers

    Full text link
    In this paper we construct a deterministic polynomial time algorithm for the problem where a set of users is interested in gaining access to a common file, but where each has only partial knowledge of the file. We further assume the existence of another set of terminals in the system, called helpers, who are not interested in the common file, but who are willing to help the users. Given that the collective information of all the terminals is sufficient to allow recovery of the entire file, the goal is to minimize the (weighted) sum of bits that these terminals need to exchange over a noiseless public channel in order achieve this goal. Based on established connections to the multi-terminal secrecy problem, our algorithm also implies a polynomial-time method for constructing the largest shared secret key in the presence of an eavesdropper. We consider the following side-information settings: (i) side-information in the form of uncoded packets of the file, where the terminals' side-information consists of subsets of the file; (ii) side-information in the form of linearly correlated packets, where the terminals have access to linear combinations of the file packets; and (iii) the general setting where the the terminals' side-information has an arbitrary (i.i.d.) correlation structure. We provide a polynomial-time algorithm (in the number of terminals) that finds the optimal rate allocations for these terminals, and then determines an explicit optimal transmission scheme for cases (i) and (ii)
    • …
    corecore