A CHARACTERIZATION OF MATRGIDAL SYSTEMS OF INEQUALITTES

M. CONFORTI and M. LAURENT
New York University, New York, NY 10003, U.S.A.

Received 8 April 1986

Revised 1 April 1987

Abstract

 and ones and b is a nonnegaive integer vector. Wie give a tharacerization of such polyhedra whose extreme points are the incidence vectors of the fartily of independent sets of a matioid and extend our result to polyhedra which are the convex hull ofi integra! polymatroids. We also introduce some new classes of integral matroid polyhedra which extend a result of Edmonds.

We assume familiarity with the basic matroid theory. We recall here the main definitions and refer to [3] for an extensive treatment. Let E be a finite set. A collection \mathscr{I} of subsets of E is called an independence system if $\mathscr{I} \neq \emptyset$ and for all $I, I \subset E, I \in \mathscr{I}$ and $J \subseteq I$ imply $J \in \mathscr{G}$. If \mathscr{I} also satisfies the foilowing exhange property: for all $I, J \in \mathscr{I}$ such that $|I|<|J|$, there exists an element $e \in J-I$ such that $I \cup e \in \mathscr{I}$, then \mathscr{I} is called a matroid and its members are called the independent sets of the matroid. The $\operatorname{rank} r(A)$ of a subset A of E is the maximum cardinality of an independent subset of A and the rank function r is the set function associating to every subset A of E its rank $r(A)$. A subset F of E is called closed or flat if $r(F \cup e)>r(F)$ for all $e \in E-F$. The closure operator σ is the set function associating with every subset A of E the subset $\sigma(A)=\{e \in E: r(A \cup e)$ $=r(A)\}$; if \mathscr{I} is a matroid, then $\sigma(A)$ is the smallest flat containing A. For further properties of the independent sets, the rank function, the flats, the closure operator, see also [3].

Let \mathscr{A} be a collecticas of p nonempty subsets of a finite set $E,|E|=\boldsymbol{n}, b$ be a vector of \mathbb{N}^{P}. Consider the family of 0,1 yectors x which are solution to the following system:

$$
\begin{equation*}
M x \leqslant b, \tag{1}
\end{equation*}
$$

where M is the $p \times n$ incidence matrix of the collection \mathscr{A}. The solutions of (1) are the incidence vectors of the elements of the following independence system: $\mathscr{I}(\mathscr{A}, b)=\{I \subseteq E:|I \cap A| \leqslant b(A) \forall A \in \mathscr{A}\}$. The rank function r of $\mathscr{Y}(\mathscr{A}, b)$ is defined by $r(S)=\operatorname{Max}\{|I|: I \subseteq \mathscr{G}(\mathscr{A}, b), I \subseteq S\}$ for every subset S of E. It is well known (see [3]) that $\mathscr{I}(\mathscr{A}, b)$ is a matroid if and only if th' function r is submodular on 2^{E}, that is:

$$
\begin{equation*}
r(S \cup T)+r(S \cap T) \leqslant r(S)+r(T) \text { for all subsets } S, T \text { of } E \tag{2}
\end{equation*}
$$

Our first result shows that it is in fact enough to suppose that (2) is satisfied for every pair of members of \mathscr{A}.

Theorem 3. The following statements are equivalent:

(i) $\mathscr{P}(\mathscr{A}, b)$ is a matroid,
(ii) $r(A \cup B)+r(A \cap B) \leqslant r(A)+r(B)$ for all $A, B \in \mathscr{A}$ such that $A \cap B \neq \emptyset$,
(iii) $r(A \cup \bar{B})+r(A \cap B) \leqslant b(A)+b(B)$ for all $A, B \in \mathscr{A}$ such that $A \cap B \neq \bar{\emptyset}$.

Proof. The implication (i) \rightarrow (ii) follows from (2) and (ii) \rightarrow (iii) follows from the fact that $b(A) \geqslant r(A)$ for all $A \in \mathscr{A}$. Hence, it suffices to show that (iii) \rightarrow (\mathbf{i}). Let us suppose by contradistion that $\mathscr{I}(\mathscr{A}, b)$ is not a matroid; we are gơine to construct a pair $(A, B) \in \mathscr{A}$ contradicting (iii).

Since $\mathscr{I}(\mathscr{A}, b)$ is not a matroid, there exists I, J in $\mathscr{I}(\mathscr{A}, b)$ such that $|I|<|J|$ and $I \cup e \notin \mathscr{G}(\mathscr{A}, b)$ for all $e \in J-I$. Let us choose euch a pair (I, J) for which $|I \Delta J|$ is minimum where $I \Delta J=(I-J) \cup(J-I)$. It is easy to see that $v a z$ save: $|J|=:|n|+1$ and $|\Delta \Delta| \geqslant 3$ 。

We first show that the theorem holds when $|I \Delta J|=3$. Then we have clearly that $|I-J|=1$ and $|J-I|=2$. Let $I_{0}=I \cap J$, then $I=I_{0} \cup a$ and $J=I_{0} \cup\{e, f\}$ where a, e, f are distinct elements of E.

Since $I \cup e \notin \mathscr{F}(\mathscr{A}, b)$, there exists A in \mathscr{A} such that

$$
|(I \cup e) \cap A| \geqslant b(A)+1 .
$$

Since $I \in \mathscr{I}(\mathscr{A}, b)$, we also have

$$
|I \cap A| \leqslant b(A) .
$$

Therefore, we obtain

$$
|I \cap A|=b(A) \text { and } e \in A
$$

In the same way, there exists B in \mathscr{A} such that:

$$
|I \cap B|=b(B) \text { and } f \in B .
$$

We now prove that element a belongs to $A \cap B$. We have

$$
b(A)=|I \cap A|=\left|I_{0} \cap A\right|+|a \cap A| .
$$

Since $J \in \mathscr{I}(\mathscr{A}, b)$, we also have

$$
b(A) \geqslant|J \cap A| \geqslant\left|\left(I_{0} \cup e\right) \cap A\right|=\| I_{0} \cap A \mid+1
$$

Therefore, $a \in A$ and, by the same argument, $a \in B$. Let us now see that (A, B) contradicts (iii).

$$
\begin{aligned}
b(A)+b(B) & =|I \cap A|+|I \cap B| \\
& =\left|L_{0} \cap A\right|+\left|L_{0} \cap B\right|+|a \cap A|+|a \cap B| \\
& =\left|L_{0} \cap(A \cap B)\right|+\left|I_{0} \cap(A \cup B)\right|+2 \\
& =|\cap \cap(A \cap B)|+|J \cap(A \cup B)|-1 \\
& <r(A \cap B)+r(A \cup B) .
\end{aligned}
$$

We now prove that, in fact, $|I \Delta J|=3$. Suppose for a contradiction that $|I \Delta J|>3$. Choose some elements a in $I-J$ and b in $J-I$. Hence, we have

$$
|J-b|=|I-a|+1
$$

and

$$
|(I-a) \Delta(J-b)|=|I \Delta J|-2<|I \Delta J|,
$$

therefore, by choice of (I, J), there exists an element x in $(J-b)-(I-a)$ such that $I^{\prime}=I-a+x \in \mathscr{I}$.

Consider the pair $\left(I^{\prime}, J\right)$ of \mathscr{I}. Since $|J|=\left|I^{\prime}\right|+1$ and $\left|J \Delta I^{\prime}\right|=|J \Delta I|-2<$ $|J \Delta I|$, we deduce again that there exists an element y in $J-I^{\prime}$ such that $I^{\prime \prime}=I^{\prime} \cup y \in \mathscr{I}$.

Consider now the pair (I, $I^{\prime \prime}$) of \mathscr{I}. We have $\left|I^{\prime \prime}\right|=|I|+1$ and $\mid I^{\prime \prime} \Delta I \|=3<$ $|I \Delta J|$ by assumption; therefere, we infer again the existence of an element z in $I^{\prime \prime}-I$ such that $J U z \in \mathcal{F}$. However, since $I^{\prime \prime}-I=\{x, y\}$ is contained in J, the assertion: $I \cup z \in \mathscr{I}$ contradicts our assumption on (I, J).

Corollary 4. $\mathscr{G}(\mathscr{A l}, b)$ is a matroid for all vectors $b \in \mathbb{N}^{n}$ if and only if \mathscr{A} is a nested family, that is, for all members, A, B of \mathscr{A} such that $A \cap B \neq \emptyset$, then $A \subseteq B$ or $B \subseteq A$.

Proof. Sufficiency follows trivially from Theorem 3. Suppose now that \mathscr{A} is not a nested family, so there exists A, B in \mathscr{A} such that $A \cap B \neq \emptyset, A \notin B$ and $B \notin A$. Define the function b on \mathscr{A} by: $b(C)=\operatorname{Max}(1,|C \cap(A \cup B-A \cap B)|)$ for ail $C \in \mathscr{A}$. It is easy to see that: $r(A)=|A-B|, r(B)=|B-A|, r(A \cap B) \geqslant 1$ and $r(A \cup B)=|A \cup B-A \cap B|=r(A)+r(B)$, and therefore $r(A \cup B)+r(A \cap B)>$ $r(A)+r(\bar{B})$.

Remark 5. Theorem 3 provides an efficient procedure to test whether the family of 0,1 vectors which solve the system $M x \leqslant b$ can be interpreted as the set of incidence vectors of the independent sets of a matroid, provided that a rank oracle for the independence system $\mathscr{G}(\mathscr{A}, b)$ is available. In fact, much less is needed: let $\mathrm{Ub}(A)$ be an upper bound to the value of the rank of the set A that is guaranteed to be tight, i.e., to coincide with $r(A)$, when $\mathscr{F}(\mathscr{A}, b)$ is a matroid. Then, as a consequence of Theorem $3, \mathscr{P}(\mathscr{A}, b)$ is a matroid if and only if $\mathrm{Ub}(A \cup B)+\mathrm{Ub}(A \cap B) \leqslant b(A)+h(B)$ for al! $A, B \in \mathscr{A}$ sucia that $A \bar{\Pi} \bar{B} \neq \equiv$. However, we do not know any efficient algorithm to compute the values of $\mathrm{Ub}(A \cap B), \mathrm{Ub}(A \cup B)$.

Consider now the following theorem due to Edmonds ([1])
Theorem 6. If \mathscr{A} is an intersecting family, i.e., $A \cap B \in \mathscr{A}, A \cup B \in \mathscr{A}$ for ait $A, B \in \mathscr{A}$ such that $A \cap b \neq\{$, and if $b(A \cup B)+b(A \cap B) \leqslant b(A)+b(B)$ for all $A, B \in \mathscr{A}$ such that $A \cap B \neq \emptyset$, then $\mathscr{G}(\mathscr{A}, b)$ is a matroid and its rank function is given by $r(S)=\min \left\{\sum b\left(A_{i}\right)+\left|S-\cup A_{i}\right|: A_{i} \in \mathscr{A}, A_{i} \cap A_{j} \neq \emptyset\right.$ for all $\left.i \neq j\right\}$ for every subset S of E.

Furthermore, the polyhedron spanned by the incidence vectors of $\mathscr{F}(\mathscr{A}, b)$ is $P=\{x: 0 \leqslant x \leqslant 1, M x \leqslant b\}$.

Remark 7. Theorem 3 generalizes the first part of Theorem 6 stating that $\mathscr{I}(\mathscr{A}, b)$ is a matroid (use (iii) and observe that $r(A \cap B)+r(A \cup B) \leqslant b(A \cap B)$ $+b(A \cup B)$ for all intersecting $A, B \in \mathscr{A})$.

Remark 8. Theorem 3 does not extend to the case when the rank function is assumed to be submodular only on crossing pairs, that is, on pairs (A, B) of members of \mathscr{A} such that $A \cap B \neq \emptyset$ and $A \cup B \neq E$. Take, for instance, $E=$ $\{1,2,3,4,5\} \quad$ and $\mathscr{A}=\{A=\{1,2,3\}, B=\{1,4,5\}, C=\{1,2,3,5\}\} \quad$ with $b(A)=2, b(B)=2$ and $b(C)=3$. The rank function of $\mathscr{G}(\mathscr{A}, b)$ is submodular on the unique crossing pair (A, C), but $\mathscr{F}(\mathscr{A}, b)$ is not a matroid since its bases are $\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\}$ and $\{2,3,4,5\}$.

In the following part, we give a sufficient condition for the integrality of the polyhedron: $P=\{x: 0 \leqslant x \leqslant 1, M x \leqslant b\}$ when $\mathscr{F}(\mathscr{A}, b)$ is a matroid, generalizing the second part of Theorem 6 of Edmonds.

Let us first recall some results on matroids polyhedra. Let \mathcal{M} be a matroid on the set E with \mathscr{I} as family of independent sets, r as rank function, σ as closure operator. We assume that the foilowing condition holds:

$$
\begin{equation*}
\{e\} \in \mathscr{I} \quad \text { for all } e \in E . \tag{9}
\end{equation*}
$$

A subsec F of E is called separable if F can be partitioned into $F=F_{1} \cup F_{2}$ with $F_{1} \neq \emptyset, F_{2} \neq \emptyset$ and $r(F)=r\left(F_{1}\right)+r\left(F_{2}\right)$. Notice that if F is closed, then F_{1}, F_{2} are also closed; indeed we have $F=J\left(F_{1}\right) \cup \sigma\left(F_{2}\right)$ and therefore we deduce from (2) that $r(F) \approx \dot{r}\left(\sigma\left(F_{1}\right)\right)+r\left(\sigma\left(F_{2}\right)\right)-r\left(\sigma\left(F_{1}\right) \cap \sigma\left(F_{2}\right)\right)$, which implies $r\left(\sigma\left(F_{1}\right) \cap\right.$ $\left.\sigma\left(F_{2}\right)\right)=0$ and thus $\sigma\left(F_{1}\right) \cap \sigma\left(F_{2}\right)=\emptyset$ since $\left.r\left(\sigma\left(F_{1}\right)\right)=r\left(F_{1}\right), r\left(\sigma\left(F_{2}\right)\right)=r\left(F_{2}\right)\right)$ and $r(F)=r\left(F_{1}\right)+r\left(F_{2}\right)$.

Let \mathbb{P}_{0} be the polyhedron spanned by the incidence vectors of the members of \mathcal{F}. The following theorem, due to Edmonds, gives the facets of P_{0}, i.e., the minimal set of linear inequalities necersary to define \mathscr{F}_{0}.

Theorean 10 (see [2]). The polyhedron P_{0} is given by

$$
\left\{x \geqslant 0: \sum_{e \in F} x_{e} \leqslant r(F), \text { for every subset } F \subseteq E\right\}
$$

Furthermore, let F be a subset of E, then the inequality $\sum_{e \in F} x_{e} \leqslant r(F)$ induces a facet of P_{0} if and only if F is closed and nonseparable.

Using this result, we prove the following theorem:

Theorem 11. Suppose \mathscr{A}, b satisfy the following conditions:
(i) $\mathscr{I}(\mathscr{A}, b)$ is a matroid,
(ii) $A \cup \bar{B} \in \mathbb{A}$ for ail $\hat{A}, \vec{B} \in \mathscr{A}$ such that $A \cap B \neq \emptyset$,
(iii) $b(A)=r(A)$ for all $A \in \mathscr{A}$ which is a nonseparaioie flat,
(iv) $b(A) \geqslant 1$ for all $A \in \mathscr{A}$.

Then the polyhedron spanned by the incidence veciors of the members of $\mathscr{I}(\mathscr{A}, b)$ is equal to $P=\{x: 0 \leqslant x \leqslant 1, M x \leqslant b\}$.

Notice that (iv) is equivalent to the condition (9) mentioned above.
Proof. In view of Theorem 10, it is enough to show that every nonseparable cloind set F such that $|F| \geqslant 2$ is a member of the family \mathscr{A}, since, by (iii), we have, in this case, $r(F)=b(F)$; the polyhedron F being integral if and only if all the facets of P, different from $x_{e} \geqslant 0$ and $x_{e} \leqslant 1$, are contained in the set of linear inequalities given by $M x \leqslant b$. Let F be a closed nonseparable subset of E with $|F| \geqslant 2$. We prove that $F \in \mathbb{S}^{〔}$ through Limmas 12, 13, 14 as follows. Define $\mathscr{A}_{F}=\{A \in \mathscr{A}: A \subseteq F\}$. Lemma 12 implies that $\mathscr{A}_{F} \neq \emptyset$. Let A_{1}, \ldots, A_{m} be the distinct maximal elements of \mathscr{A}_{F}, hence $A_{1} \cup \cdots \cup A_{m} \subseteq F$ and, as a consequence of condition (ii), $A_{i} \cap A_{j}=\emptyset$. Lemma 13 proves that $F=A_{1} \cup \cdots \cup A_{m}$. Then Lemma 14 shows that $r\left(\vec{i}^{*}\right)=\sum_{i=1}^{m} r\left(A_{i}\right)$ implying that $m=1$, else F is separable, and thus $F=A_{1} \in \mathscr{A}$.

Lemmua 12. Let I be a maximal independent subset of F and e be an element of $F-I$. Th :n there exists a subset $A \in \mathscr{A}, A \subseteq F$ such inat $e \in A$ and $|I \cap A|=b(A)$.

Froof. Since $e \in F-I, I \cup e \notin \mathscr{I}(\mathscr{A}, b)$ which implies the existence of $A \in \mathscr{A}$ such that $e \in A$ and $|\bar{I} \cap A|=b(A)$. Suppose by contradiction that $A \notin F$, hence there exists an element $a \in A-F$. Since $a \notin F, I \cup a \in \mathscr{I}(\mathscr{A}, b)$ yielding $\mid I \cup a) \cap A \mid \leqslant$ $b(A)$, which contradicts the assumptions $|I \cap A|=b(A)$ and $a \in A$.

Notice that, since F is nonseparable, F is not an independent set and therefore we can find an independent set I and an element e as defined in Lemma 12.

Lemma 13. $F=A_{1} \cup A_{2} \cup \cdots \cup A_{m}$.
irroof. Let e be an element of F. We show that e belongs to some of the A_{i} 's. We first prove that $r(F-e)=r(F)$; otherwise we have $r(F)=r(F-e)+1=r(F-$ $e)+r(\{e\})$, which contradicts the nonseparability of F. Let I be a maximal independent subset of $F-e$, hence I is also a maximal independent subset of F. From Lemma 12, there exists $A \in \mathscr{A}$ such that $e \in A$ and $A \subseteq F$. Let A_{i} be a maximal element of \mathscr{A}_{F} containing A, then $e \in A_{i}$.

Lemma 14. The flat F is separable; in fact, $r(F)=\sum_{i=1}^{m} r\left(A_{i}\right)$.

Proof. Let I be a maximal independent subset of F and $I_{i}=I \cap A_{i}$ for $i \in[1, m]$. It is enough to show that I_{i} is indeed a maximal independent subset of A_{i}, that is, $\left|\bar{I}_{i}\right|=r\left(A_{i}\right)$, yielding therefore

$$
r(F)=|I|=\sum_{i=1}^{m}\left|I_{i}\right|=\sum_{i=1}^{m} r\left(A_{i}\right)
$$

Suppose by contradiction that there exists an element $e \in A_{i}-I_{i}$ such that $I_{i} \cup e \in \mathscr{I}(\mathscr{A}, b)$. Hence $e \in F-I$ and again Lemma 12 yields the existence of $A \in \mathscr{A}$ such that $e \in A,|I \cap A|=b(A)$ and $A \subseteq F$. Since $e \in A \cap A_{i}$, we have therefore $A \subseteq A_{i}$; hence $b(A)+1=|(I \cup e) \cap A|=\left|(I \cup e) \cap A \cap A_{i}\right|=\mid\left(I_{i} \cup e\right) \cap$ $A \mid$ which contradicss the fact that $I_{i} \cup e$ is independent.

In this last section, we consider the following polyhedron:

$$
\begin{equation*}
\operatorname{Conv}\left\{x \in \mathbb{N}^{n}: M x \leqslant b\right\} \tag{15}
\end{equation*}
$$

where M is again the $p \times n$ incidence matrix of a collection \mathscr{A} of p nonemtpy subscts of $E=[1, n]$ and b is a vector of \mathbb{N}^{p}. Let us denote by $P(\mathscr{A}, b)$ the set of integral points of polyhedron (15). We characterize those polyhedra (15) for which $P(\mathscr{A}, b)$ is a polymatroid.

Given a vector $u=\left(u_{1}, \ldots, u_{n}\right)$ of \mathbb{R}^{n}, let $|u|=\sum_{i=1}^{n} u_{i}$. Given two vectors u, v of \mathbb{R}^{n}, define the vector $w=u \vee v$ of \mathbb{R}^{n} whose components are $w_{i}=\operatorname{Max}\left(u_{i}, v_{i}\right)$ for all $i \in[1, n]$. Consider the following partial order on $\mathbb{R}^{n} ; x \leqslant y$ if and only if $x_{i} \leqslant y_{i}$ for all $\hat{i} \in[1, n]$. For all $i \in[1, n], e_{i}$ denotes the vector of \mathbb{R}^{n} whose components are all equal to zero except the i th component which is equal to one. Let P be a family of vectors of \mathbb{N}^{n}. For every subset S of E, we define the rank of S by:

$$
\begin{equation*}
\rho(S)=\operatorname{Max}\left(\sum_{i \in S} u_{i}: u \in P\right) \tag{16}
\end{equation*}
$$

and the rank function is the set function associating with every $S \subseteq E$ its rank $\rho(S)$.

An integral polymatroid is a family P of vectors of \mathbb{N}^{n} such that:
(P1) for all $u \in P$ and $v \in \mathbb{N}^{n}$, if $v \leqslant u$, then $v \in P$;
(P2) for all $u, v \in P$, if $|v|>|u|$, then there exists $w \in P$ such that $u<w \leqslant u \vee v$.

The vectors of P are called independent vectors. The concept of integral polymatroids was introduced by Edmonds in [1] as a generalization of matroids (obtained when P contains only 0,1 -vectors; then the independent sets of matroid are precisely the subsets of \mathbb{N} whose 0,1 incidence vectors belong to P). An introduction to integral polymatroids can be found in [3].

Given a family \mathbb{P} of vectors of \mathbb{N}^{n} satisfying $(\mathbb{P} 1)$, it is known (see [3]) that \mathbb{P} is a polymatroid if and only if its rank function ρ (as defined in (16)) is a
submodular set function, that is:

$$
\begin{equation*}
\rho(\tilde{\mathcal{S}} \cup T)+\rho(S \cap T) \leqslant \rho(S)+\rho(T) \quad \text { for all } S, T \subseteq E . \tag{17}
\end{equation*}
$$

Our next result shows that it is in fact enough to suppose that (17) is satisfied for each intersecting pair of members of sd, thus extending Theorem 3 to polymatroids. The proof, although more involved, is very similar to the one used in Theorem 3, hence it is omitted.

Theorem 18. The following statements are equivalent:
(i) $P(\mathscr{A}, b)$ is a polymatroid,
(ii) $\rho(A \cup B)+\rho(A \cap B) \leqslant \rho(A)+\rho(B)$ for all $A, B \in \mathscr{A}$ such that $A \cap B \neq \emptyset$,
(iii) $\rho(A \cup B)+\rho(A \cap B) \leqslant b(A)+b(B)$ for all $A, B \in \mathscr{A}$ such thai $A \cap B \neq \emptyset$.

Acknowledgments

We thank Manfred Padberg for improving substantially the presentation of this paper.

References

[1] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: R. Guy, H. Hanani, N. Sauer and J. Schönheim, eds., Combinatorial Structures and Applications, Proc. Internat. Conference, Calgary, Alberta, 1969 (Gordon and Breach, New York, 1970) 69-87.
[2] R. Giles, Submodular functions, graphs and integer polyhedra, Ph.D. Thesis, University of Waterloo (1975).
[3] D. Welsh, Matroid Theory (Academic Press, New York, 1976).

