Discrete Mathematics 69 (1988) 165-171 North-Holland

165

A CHARACTER ZATION OF MATRGIDAL SYSTEMS OF INEQUALITIES

M. CONFORTI and M. LAURENT

New York University, New York, NY 10003, U.S.A.

Received 8 April 1986 Revised 1 April 1987

We consider the polyhedron $Conv\{x \in \{0, 1\}^n: Mx \le b\}$, where *M* is a $p \times n$ matrix of zeroes and ones and *b* is a nonnegative integer vector. We give a characterization of such polyhedra whose extreme points are the incidence vectors of the family of independent sets of a matroid and extend our result to polyhedra which are the convex hull of integral polymatroids. We also introduce some new classes of integral matroid polyhedra which extend a result of Edmonds.

We assume familiarity with the basic matroid theory. We recall here the main definitions and refer to [3] for an extensive treatment. Let E be a finite set. A collection \mathcal{I} of subsets of E is called an *independence system* if $\mathcal{I} \neq \emptyset$ and for all $I, J \subseteq E$, $I \in \mathcal{I}$ and $J \subseteq I$ imply $J \in \mathcal{I}$. If \mathcal{I} also satisfies the following exhange property: for all $I, J \in \mathcal{I}$ such that |I| < |J|, there exists an element $e \in J - I$ such that $I \cup e \in \mathcal{I}$, then \mathcal{I} is called a *matroid* and its members are called the *independent sets* of the matroid. The *rank* r(A) of a subset A of E is the maximum cardinality of an independent subset of A and the *rank function* r is the set function associating to every subset A of E its rank r(A). A subset F of E is called *closed* or *flat* if $r(F \cup e) > r(F)$ for all $e \in E - F$. The *closure operator* σ is the set function associating with every subset A of E the subset $\sigma(A) = \{e \in E : r(A \cup e)$ $= r(A)\}$; if \mathcal{I} is a matroid, then $\sigma(A)$ is the smallest flat containing A. For further properties of the independent sets, the rank function, the flats, the closure operator, see also [3].

Let \mathscr{A} be a collection of p nonempty subsets of a finite set E, |E| = n, b be a vector of \mathbb{N}^p . Consider the family of 0, 1 vectors x which are solution to the following system:

$$Mx \leq b, \tag{1}$$

where *M* is the $p \times n$ incidence matrix of the collection \mathscr{A} . The solutions of (1) are the incidence vectors of the elements of the following independence system: $\mathscr{I}(\mathscr{A}, b) = \{I \subseteq E : |I \cap A| \leq b(A) \ \forall A \in \mathscr{A}\}$. The rank function *r* of $\mathscr{I}(\mathscr{A}, b)$ is defined by $r(S) = Max\{|I|: I \in \mathscr{I}(\mathscr{A}, b), I \subseteq S\}$ for every subset *S* of *E*. It is well known (see [3]) that $\mathscr{I}(\mathscr{A}, b)$ is a matroid if and only if the function *r* is submodular on 2^E , that is:

$$r(S \cup T) + r(S \cap T) \le r(S) + r(T) \quad \text{for all subsets } S, T \text{ of } E.$$
(2)

0012-365X/88/\$3.50 (C) 1988, Elsevier Science Publisher: 3.V. (North-Holland)

Our first result shows that it is in fact enough to suppose that (2) is satisfied for every pair of members of \mathcal{A} .

Theorem 3. The following statements are equivalent:

- (i) $\mathcal{I}(\mathcal{A}, b)$ is a matroid,
- (ii) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ for all $A, B \in \mathcal{A}$ such that $A \cap B \ne \emptyset$,
- (iii) $r(A \cup \overline{B}) + r(A \cap B) \le b(A) + b(B)$ for all A, $B \in \mathcal{A}$ such that $A \cap \overline{B} \ne \emptyset$.

Proof. The implication (i) \rightarrow (ii) follows from (2) and (ii) \rightarrow (iii) follows from the fact that $b(A) \ge r(A)$ for all $A \in \mathcal{A}$. Hence, it suffices to show that (iii) \rightarrow (i). Let us suppose by contradiction that $\mathcal{I}(\mathcal{A}, b)$ is not a matroid; we are going to construct a pair $(A, B) \in \mathcal{A}$ contradicting (iii).

Since $\mathscr{I}(\mathscr{A}, b)$ is not a matroid, there exists I, J in $\mathscr{I}(\mathscr{A}, b)$ such that |I| < |J|and $I \cup e \notin \mathscr{I}(\mathscr{A}, b)$ for all $e \in J - I$. Let us choose such a pair (I, J) for which $|I \Delta J|$ is minimum where $I \Delta J = (I - J) \cup (J - I)$. It is easy to see that we have: |J| = |I| + 1 and $|I \Delta J| \ge 3$.

We first show that the theorem holds when $|I \Delta J| = 3$. Then we have clearly that |I - J| = 1 and |J - I| = 2. Let $I_0 = I \cap J$, then $I = I_0 \cup a$ and $J = I_0 \cup \{e, f\}$ where a, e, f are distinct elements of E.

Since $I \cup e \notin \mathcal{I}(\mathcal{A}, b)$, there exists A in \mathcal{A} such that

 $|(I \cup e) \cap A| \ge b(A) + 1.$

Since $I \in \mathcal{I}(\mathcal{A}, b)$, we also have

 $|I \cap A| \leq b(A).$

Therefore, we obtain

 $|I \cap A| = b(A)$ and $e \in A$.

In the same way, there exists B in \mathcal{A} such that:

 $|I \cap B| = b(B)$ and $f \in B$.

We now prove that element a belongs to $A \cap B$. We have

 $b(A) = |I \cap A| = |I_0 \cap A| + |a \cap A|.$

Since $J \in \mathcal{I}(\mathcal{A}, b)$, we also have

 $b(A) \ge |J \cap A| \ge |(I_0 \cup e) \cap A| = ||I_0 \cap A| + 1.$

Therefore, $a \in A$ and, by the same argument, $a \in B$. Let us now see that (A, B) contradicts (iii).

$$b(A) + b(B) = |I \cap A| + |I \cap B|$$

= $|I_0 \cap A| + |I_0 \cap B| + |a \cap A| + |a \cap B|$
= $|I_0 \cap (A \cap B)| + |I_0 \cap (A \cup B)| + 2$
= $|I \cap (A \cap B)| + |J \cap (A \cup B)| - 1$
< $r(A \cap B) + r(A \cup B).$

We now prove that, in fact, $|I \Delta J| = 3$. Suppose for a contradiction that $|I \Delta J| > 3$. Choose some elements a in I - J and b in J - I. Hence, we have

|J-b| = |I-a| + 1

and

$$|(I-a)\Delta(J-b)| = |I\Delta J| - 2 < |I\Delta J|,$$

therefore, by choice of (I, J), there exists an element x in (J-b) - (I-a) such that $I' = I - a + x \in \mathcal{I}$.

Consider the pair (I', J) of \mathcal{I} . Since |J| = |I'| + 1 and $|J \Delta I'| = |J \Delta I| - 2 < |J \Delta I|$, we deduce again that there exists an element y in J - I' such that $I'' = I' \cup y \in \mathcal{I}$.

Consider now the pair (I, I'') of \mathcal{I} . We have |I''| = |I| + 1 and $|I'' \Delta I|| = 3 < |I \Delta J|$ by assumption; therefore, we infer again the existence of an element z in I'' - I such that $I \cup z \in \mathcal{I}$. However, since $I'' - I = \{x, y\}$ is contained in J, the assertion: $I \cup z \in \mathcal{I}$ contradicts our assumption on (I, J). \Box

Corollary 4. $\mathscr{I}(\mathscr{A}, b)$ is a matroid for all vectors $b \in \mathbb{N}^n$ if and only if \mathscr{A} is a nested family, that is, for all members, A, B of \mathscr{A} such that $A \cap B \neq \emptyset$, then $A \subseteq B$ or $B \subseteq A$.

Proof. Sufficiency follows trivially from Theorem 3. Suppose now that \mathscr{A} is not a nested family, so there exists A, B in \mathscr{A} such that $A \cap B \neq \emptyset$, $A \notin B$ and $B \notin A$. Define the function b on \mathscr{A} by: $b(C) = Max(1, |C \cap (A \cup B - A \cap B)|)$ for all $C \in \mathscr{A}$. It is easy to see that: r(A) = |A - B|, r(B) = |B - A|, $r(A \cap B) \ge 1$ and $r(A \cup B) = |A \cup B - A \cap B| = r(A) + r(B)$, and therefore $r(A \cup B) + r(A \cap B) > r(A) + r(B)$. \Box

Remark 5. Theorem 3 provides an efficient procedure to test whether the family of 0, 1 vectors which solve the system $Mx \le b$ can be interpreted as the set of incidence vectors of the independent sets of a matroid, provided that a rank oracle for the independence system $\mathscr{I}(\mathscr{A}, b)$ is available. In fact, much less is needed: let Ub(A) be an upper bound to the value of the rank of the set A that is guaranteed to be tight, i.e., to coincide with r(A), when $\mathscr{I}(\mathscr{A}, b)$ is a matroid. Then, as a consequence of Theorem 3, $\mathscr{I}(\mathscr{A}, b)$ is a matroid if and only if Ub($A \cup B$) + Ub($A \cap B$) $\le b(A) + b(B)$ for all $A, B \in \mathscr{A}$ such that $A \cap B \neq \emptyset$. However, we do not know any efficient algorithm to compute the values of Ub($A \cap B$), Ub($A \cup B$).

Consider now the following theorem due to Edmonds ([1])

Theorem 6. If \mathscr{A} is an intersecting family, i.e., $A \cap B \in \mathscr{A}$, $A \cup B \in \mathscr{A}$ for all $A, B \in \mathscr{A}$ such that $A \cap b \neq \emptyset$, and if $b(A \cup B) + b(A \cap B) \leq b(A) + b(B)$ for all $A, B \in \mathscr{A}$ such that $A \cap B \neq \emptyset$, then $\mathscr{I}(\mathscr{A}, b)$ is a matroid and its rank function is given by $r(S) = \min\{\sum b(A_i) + |S - \bigcup A_i| : A_i \in \mathscr{A}, A_i \cap A_j \neq \emptyset \text{ for all } i \neq j\}$ for every subset S of E.

Furthermore, the polyhedron spanned by the incidence vectors of $\mathcal{I}(\mathcal{A}, b)$ is $P = \{x: 0 \le x \le 1, Mx \le b\}.$

Remark 7. Theorem 3 generalizes the first part of Theorem 6 stating that $\mathscr{I}(\mathscr{A}, b)$ is a matroid (use (iii) and observe that $r(A \cap B) + r(A \cup B) \leq b(A \cap B) + b(A \cup B)$ for all intersecting $A, B \in \mathscr{A}$).

Remark 8. Theorem 3 does not extend to the case when the rank function is assumed to be submodular only on crossing pairs, that is, on pairs (A, B) of members of \mathcal{A} such that $A \cap B \neq \emptyset$ and $A \cup B \neq E$. Take, for instance, $E = \{1, 2, 3, 4, 5\}$ and $\mathcal{A} = \{A = \{1, 2, 3\}, B = \{1, 4, 5\}, C = \{1, 2, 3, 5\}\}$ with b(A) = 2, b(B) = 2 and b(C) = 3. The rank function of $\mathcal{I}(\mathcal{A}, b)$ is submodular on the unique crossing pair (A, C), but $\mathcal{I}(\mathcal{A}, b)$ is not a matroid since its bases are $\{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 4\}, \{1, 3, 5\}$ and $\{2, 3, 4, 5\}$.

In the following part, we give a sufficient condition for the integrality of the polyhedron: $P = \{x: 0 \le x \le 1, Mx \le b\}$ when $\mathcal{I}(\mathcal{A}, b)$ is a matroid, generalizing the second part of Theorem 6 of Edmonds.

Let us first recall some results on matroids polyhedra. Let \mathcal{M} be a matroid on the set E with \mathcal{I} as family of independent sets, r as rank function, σ as closure operator. We assume that the following condition holds:

$$\{e\} \in \mathscr{I} \quad \text{for all } e \in E. \tag{9}$$

A subset F of E is called *separable* if F can be partitioned into $F = F_1 \cup F_2$ with $F_1 \neq \emptyset$, $F_2 \neq \emptyset$ and $r(F) = r(F_1) + r(F_2)$. Notice that if F is closed, then F_1 , F_2 are also closed; indeed we have $F = \sigma(F_1) \cup \sigma(F_2)$ and therefore we deduce from (2) that $r(F) \leq r(\sigma(F_1)) + r(\sigma(F_2)) - r(\sigma(F_1) \cap \sigma(F_2))$, which implies $r(\sigma(F_1) \cap \sigma(F_2)) = 0$ and thus $\sigma(F_1) \cap \sigma(F_2) = \emptyset$ since $r(\sigma(F_1)) = r(F_1)$, $r(\sigma(F_2)) = r(F_2)$ and $r(F) = r(F_1) + r(F_2)$.

Let P_0 be the polyhedron spanned by the incidence vectors of the members of \mathcal{P} . The following theorem, due to Edmonds, gives the facets of P_0 , i.e., the minimal set of linear inequalities necessary to define P_0 .

Theorem 10 (see [2]). The polyhedron P_0 is given by

$$\Big\{x \ge 0: \sum_{e \in F} x_e \le r(F), \text{ for every subset } F \subseteq E\Big\}.$$

Furthermore, let F be a subset of E, then the inequality $\sum_{e \in F} x_e \leq r(F)$ induces a facet of P_0 if and only if F is closed and nonseparable.

Using this result, we prove the following theorem:

Theorem 11. Suppose A, b satisfy the following conditions:

- (i) $\mathcal{I}(\mathcal{A}, b)$ is a matroid,
- (ii) $A \cup B \in \mathcal{A}$ for all $A, B \in \mathcal{A}$ such that $A \cap B \neq \emptyset$,
- (iii) b(A) = r(A) for all $A \in \mathcal{A}$ which is a nonseparable flat,
- (iv) $b(A) \ge 1$ for all $A \in \mathcal{A}$.

Then the polyhedron spanned by the incidence vectors of the members of $\mathcal{I}(\mathcal{A}, b)$ is equal to $P = \{x: 0 \le x \le 1, Mx \le b\}$.

Notice that (iv) is equivalent to the condition (9) mentioned above.

Proof. In view of Theorem 10, it is enough to show that every nonseparable closed set F such that $|F| \ge 2$ is a member of the family \mathscr{A} , since, by (iii), we have, in this case, r(F) = b(F); the polyhedron P being integral if and only if all the facets of P, different from $x_e \ge 0$ and $x_e \le 1$, are contained in the set of linear inequalities given by $Mx \le b$. Let F be a closed nonseparable subset of E with $|F| \ge 2$. We prove that $F \in \mathscr{A}$ through Lemmas 12, 13, 14 as follows. Define $\mathscr{A}_F = \{A \in \mathscr{A} : A \subseteq F\}$. Lemma 12 implies that $\mathscr{A}_F \ne \emptyset$. Let A_1, \ldots, A_m be the distinct maximal elements of \mathscr{A}_F , hence $A_1 \cup \cdots \cup A_m \subseteq F$ and, as a consequence of condition (ii), $A_i \cap A_j = \emptyset$. Lemma 13 proves that $F = A_1 \cup \cdots \cup A_m$. Then Lemma 14 shows that $r(F) = \sum_{i=1}^m r(A_i)$ implying that m = 1, else F is separable, and thus $F = A_1 \in \mathscr{A}$. \Box

Lemma 12. Let I be a maximal independent subset of F and e be an element of F - I. Then there exists a subset $A \in \mathcal{A}$, $A \subseteq F$ such that $e \in A$ and $|I \cap A| = b(A)$.

Proof. Since $e \in F - I$, $I \cup e \notin \mathscr{I}(\mathscr{A}, b)$ which implies the existence of $A \in \mathscr{A}$ such that $e \in A$ and $|I \cap A| = b(A)$. Suppose by contradiction that $A \notin F$, hence there exists an element $a \in A - F$. Since $a \notin F$, $I \cup a \in \mathscr{I}(\mathscr{A}, b)$ yielding $|I \cup a) \cap A| \leq b(A)$, which contradicts the assumptions $|I \cap A| = b(A)$ and $a \in A$. \Box

Notice that, since F is nonseparable, F is not an independent set and therefore we can find an independent set I and an element e as defined in Lemma 12.

Lemma 13. $F = A_1 \cup A_2 \cup \cdots \cup A_m$.

Proof. Let e be an element of F. We show that e belongs to some of the A_i 's. We first prove that r(F-e) = r(F); otherwise we have $r(F) = r(F-e) + 1 = r(F-e) + r(\{e\})$, which contradicts the nonseparability of F. Let I be a maximal independent subset of F - e, hence I is also a maximal independent subset of F. From Lemma 12, there exists $A \in \mathcal{A}$ such that $e \in A$ and $A \subseteq F$. Let A_i be a maximal element of \mathcal{A}_F containing A, then $e \in A_i$. \Box

Lemma 14. The flat F is separable; in fact, $r(F) = \sum_{i=1}^{m} r(A_i)$.

Proof. Let I be a maximal independent subset of F and $I_i = I \cap A_i$ for $i \in [1, m]$. It is enough to show that I_i is indeed a maximal independent subset of A_i , that is, $|I_i| = r(A_i)$, yielding therefore

$$r(F) = |I| = \sum_{i=1}^{m} |I_i| = \sum_{i=1}^{m} r(A_i).$$

Suppose by contradiction that there exists an element $e \in A_i - I_i$ such that $I_i \cup e \in \mathscr{I}(\mathscr{A}, b)$. Hence $e \in F - I$ and again Lemma 12 yields the existence of $A \in \mathscr{A}$ such that $e \in A$, $|I \cap A| = b(A)$ and $A \subseteq F$. Since $e \in A \cap A_i$, we have therefore $A \subseteq A_i$; hence $b(A) + 1 = |(I \cup e) \cap A| = |(I \cup e) \cap A \cap A_i| = |(I_i \cup e) \cap A|$ which contradicts the fact that $I_i \cup e$ is independent. \Box

In this last section, we consider the following polyhedron:

$$\operatorname{Conv}\{x \in \mathbb{N}^n \colon Mx \le b\},\tag{15}$$

where *M* is again the $p \times n$ incidence matrix of a collection \mathscr{A} of *p* nonemtpy subsets of E = [1, n] and *b* is a vector of \mathbb{N}^p . Let us denote by $P(\mathscr{A}, b)$ the set of integral points of polyhedron (15). We characterize those polyhedra (15) for which $P(\mathscr{A}, b)$ is a polymatroid.

Given a vector $u = (u_1, \ldots, u_n)$ of \mathbb{R}^n , let $|u| = \sum_{i=1}^n u_i$. Given two vectors u, vof \mathbb{R}^n , define the vector $w = u \lor v$ of \mathbb{R}^n whose components are $w_i = \text{Max}(u_i, v_i)$ for all $i \in [1, n]$. Consider the following partial order on \mathbb{R}^n ; $x \le y$ if and only if $x_i \le y_i$ for all $i \in [1, n]$. For all $i \in [1, n]$, e_i denotes the vector of \mathbb{R}^n whose components are all equal to zero except the *i*th component which is equal to one. Let P be a family of vectors of \mathbb{N}^n . For every subset S of E, we define the rank of S by:

$$\rho(S) = \operatorname{Max}\left(\sum_{i \in S} u_i : u \in P\right)$$
(16)

and the rank function is the set function associating with every $S \subseteq E$ its rank $\rho(S)$.

An *integral polymatroid* is a family P of vectors of \mathbb{N}^n such that:

- (P1) for all $u \in P$ and $v \in \mathbb{N}^n$, if $v \leq u$, then $v \in P$;
- (P2) for all $u, v \in P$, if |v| > |u|, then there exists $w \in P$ such that $u < w \le u \lor v$.

The vectors of P are called *independent vectors*. The concept of integral polymatroids was introduced by Edmonds in [1] as a generalization of matroids (obtained when P contains only 0,1-vectors; then the independent sets of matroid are precisely the subsets of \mathbb{N} whose 0, 1 incidence vectors belong to P). An introduction to integral polymatroids can be found in [3].

Given a family P of vectors of \mathbb{N}^n satisfying (P1), it is known (see [3]) that P is a polymatroid if and only if its rank function ρ (as defined in (16)) is a

submodular set function, that is:

$$\rho(S \cup T) + \rho(S \cap T) \le \rho(S) + \rho(T) \quad \text{for all } S, T \subseteq E.$$
(17)

Our next result shows that it is in fact enough to suppose that (17) is satisfied for each intersecting pair of members of \mathcal{A} , thus extending Theorem 3 to polymatroids. The proof, although more involved, is very similar to the one used in Theorem 3, hence it is omitted.

Theorem 18. The following statements are equivalent:

- (i) $P(\mathcal{A}, b)$ is a polymatroid,
- (ii) $\rho(A \cup B) + \rho(A \cap B) \le \rho(A) + \rho(B)$ for all A, $B \in \mathcal{A}$ such that $A \cap B \ne \emptyset$, (iii) $\rho(A \cup B) + \rho(A \cap B) \le b(A) + b(B)$ for all A, $B \in \mathcal{A}$ such that $A \cap B \ne \emptyset$.

Acknowledgments

We thank Manfred Padberg for improving substantially the presentation of this paper.

References

- J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: R. Guy, H. Hanani, N. Sauer and J. Schönheim, eds., Combinatorial Structures and Applications, Proc. Internat. Conference, Calgary, Alberta, 1969 (Gordon and Breach, New York, 1970) 69-87.
- [2] R. Giles, Submodular functions, graphs and integer polyhedra, Ph.D. Thesis, University of Waterloo (1975).
- [3] D. Welsh, Matroid Theory (Academic Press, New York, 1976).