12,594 research outputs found

    Mixed-methods research: a new approach to evaluating the motivation and satisfaction of university students using advanced visual technologies

    Get PDF
    The final publication is available at link.springer.comA mixed-methods study evaluating the motivation and satisfaction of Architecture degree students using interactive visualization methods is presented in this paper. New technology implementations in the teaching field have been largely extended to all types of levels and educational frameworks. However, these innovations require approval validation and evaluation by the final users, the students. In this paper, the advantages and disadvantages of applying mixed evaluation technology are discussed in a case study of the use of interactive and collaborative tools for the visualization of 3D architectonical models. The main objective was to evaluate Architecture and Building Science students’ the motivation to use and satisfaction with this type of technology and to obtain adequate feedback that allows for the optimization of this type of experiment in future iterations.Postprint (author’s final draft

    Science Arts & MĂ©tiers (SAM)

    Get PDF
    International audienceAugmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated to aeronautic sector and the environment of maintenance. AR tools seem well indicated to solve constraints of productivity and quality on the aeronautical maintenance activities by simplifying data interactions for the workers. However, few evaluations of AR have been done in real processes due to the difficulty of integrating the technology without proper tools for deployment and assessing the results. This paper proposes a method to select suitable criteria for AR evaluation in industrial environment and to deploy AR solutions suited to assist maintenance workers. These are used to set up on-field experiments that demonstrate benefits of AR on process and user point of view for different profiles of workers. Further work will consist on using these elements to extend results to AR evaluation on the whole aeronautical maintenance process. A classification of maintenance activities linked to workers specific needs will lead to prediction of the value that augmented reality would bring to each activity

    Exploring Immersive Learning Experiences: A Survey

    Get PDF
    Immersive technologies have been shown to significantly improve learning as they can simplify and simulate complicated concepts in various fields. However, there is a lack of studies that analyze the recent evidence-based immersive learning experiences applied in a classroom setting or offered to the public. This study presents a systematic review of 42 papers to understand, compare, and reflect on recent attempts to integrate immersive technologies in education using seven dimensions: application field, the technology used, educational role, interaction techniques, evaluation methods, and challenges. The results show that most studies covered STEM (science, technology, engineering, math) topics and mostly used head-mounted display (HMD) virtual reality in addition to marker-based augmented reality, while mixed reality was only represented in two studies. Further, the studies mostly used a form of active learning, and highlighted touch and hardware-based interactions enabling viewpoint and select tasks. Moreover, the studies utilized experiments, questionnaires, and evaluation studies for evaluating the immersive experiences. The evaluations show improved performance and engagement, but also point to various usability issues. Finally, we discuss implications and future research directions, and compare our findings with related review studies

    A review of recent methodologies, technologies and usability in English language content delivery

    Get PDF
    English Language Teaching (ELT) and content delivery have undergone vast shift in this era of modernization. With analogue content digitized as a common form of knowledge delivery, methodologies equipped with current technologies have produced new perspectives on English Language Learning. This paper reviews the status, context, teaching parameters, assessment parameters, teaching strategies and usability in the current research capacity of ELT, highlighting the current works with technologies in their content delivery methods. Emerging technologies in ELT has also inspires the other spectrum of study involving the usability of technological interfaces, which has evolved constantly with the progression of human and computer interactivity. The aim of this research is to rediscover usability evolution surrounding the technologies in ELT and to redefine the gap existed in between English learning and tools interactivity. Current technologies and usability measures used in ELT will be discussed, highlighting the current trends in gauging interface interaction. A summary of comparative results in the aforementioned works will also be highlighted in this review paper, together with the categorization of reviewed parameters, variables and metrics in ELT. The reviews conducted have shown that there are still many unexplored areas in ELT, ELT technologies and usability in ELT

    Mobile Agents for Mobile Tourists: A User Evaluation of Gulliver's Genie

    Get PDF
    How mobile computing applications and services may be best designed, implemented and deployed remains the subject of much research. One alternative approach to developing software for mobile users that is receiving increasing attention from the research community is that of one based on intelligent agents. Recent advances in mobile computing technology have made such an approach feasible. We present an overview of the design and implementation of an archetypical mobile computing application, namely that of an electronic tourist guide. This guide is unique in that it comprises a suite of intelligent agents that conform to the strong intentional stance. However, the focus of this paper is primarily concerned with the results of detailed user evaluations conducted on this system. Within the literature, comprehensive evaluations of mobile context-sensitive systems are sparse and therefore, this paper seeks, in part, to address this deficiency

    Computer-simulated environment for training : challenge of efficacy evaluation

    Full text link
    Computer-assisted instruction has been around for decades. There has been much speculation about the benefits of computer-mediated learning. Numerous applications have been developed in different domains incorporated with emerging technologies. In recently years, advanced technologies, such as Augmented Reality (AR) and Virtual Reality (VR), have received much attention in their potential of creating interactive learning experience for the users. However, related literature and empirical studies indicated that learning effects in computer-simulated environments or Virtual Environments (VEs) are not systematically tested. Furthermore, the performance and learning in computer-simulated learning environment need to be evaluated through more rigorous methods. This paper suggests that 1) the efficacy of VEs is subject to a close examination, not only in terms of how VE-based training systems are easy of use, but also in terms of how effective learning is; 2) evaluation of learning in computer simulated learning environments is required to be reconsidered in terms of theoretical basis and evaluation methodologies that are relevant to the measurement of training effectiveness in computer-simulated virtual learning environment. This paper explains on how learning can be assessed in VEs through the lens of training evaluation.<br /

    Review of the Augmented Reality Systems for Shoulder Rehabilitation

    Get PDF
    Literature shows an increasing interest for the development of augmented reality (AR) applications in several fields, including rehabilitation. Current studies show the need for new rehabilitation tools for upper extremity, since traditional interventions are less effective than in other body regions. This review aims at: Studying to what extent AR applications are used in shoulder rehabilitation, examining wearable/non-wearable technologies employed, and investigating the evidence supporting AR effectiveness. Nine AR systems were identified and analyzed in terms of: Tracking methods, visualization technologies, integrated feedback, rehabilitation setting, and clinical evaluation. Our findings show that all these systems utilize vision-based registration, mainly with wearable marker-based tracking, and spatial displays. No system uses head-mounted displays, and only one system (11%) integrates a wearable interface (for tactile feedback). Three systems (33%) provide only visual feedback; 66% present visual-audio feedback, and only 33% of these provide visual-audio feedback, 22% visual-audio with biofeedback, and 11% visual-audio with haptic feedback. Moreover, several systems (44%) are designed primarily for home settings. Three systems (33%) have been successfully evaluated in clinical trials with more than 10 patients, showing advantages over traditional rehabilitation methods. Further clinical studies are needed to generalize the obtained findings, supporting the effectiveness of the AR applications

    An Augmented Interaction Strategy For Designing Human-Machine Interfaces For Hydraulic Excavators

    Get PDF
    Lack of adequate information feedback and work visibility, and fatigue due to repetition have been identified as the major usability gaps in the human-machine interface (HMI) design of modern hydraulic excavators that subject operators to undue mental and physical workload, resulting in poor performance. To address these gaps, this work proposed an innovative interaction strategy, termed “augmented interaction”, for enhancing the usability of the hydraulic excavator. Augmented interaction involves the embodiment of heads-up display and coordinated control schemes into an efficient, effective and safe HMI. Augmented interaction was demonstrated using a framework consisting of three phases: Design, Implementation/Visualization, and Evaluation (D.IV.E). Guided by this framework, two alternative HMI design concepts (Design A: featuring heads-up display and coordinated control; and Design B: featuring heads-up display and joystick controls) in addition to the existing HMI design (Design C: featuring monitor display and joystick controls) were prototyped. A mixed reality seating buck simulator, named the Hydraulic Excavator Augmented Reality Simulator (H.E.A.R.S), was used to implement the designs and simulate a work environment along with a rock excavation task scenario. A usability evaluation was conducted with twenty participants to characterize the impact of the new HMI types using quantitative (task completion time, TCT; and operating error, OER) and qualitative (subjective workload and user preference) metrics. The results indicated that participants had a shorter TCT with Design A. For OER, there was a lower error probability due to collisions (PER1) with Design A, and lower error probability due to misses (PER2)with Design B. The subjective measures showed a lower overall workload and a high preference for Design B. It was concluded that augmented interaction provides a viable solution for enhancing the usability of the HMI of a hydraulic excavator
    • …
    corecore