58,448 research outputs found

    Perceived quality of full HD video - subjective quality assessment

    Get PDF
    In recent years, an interest in multimedia services has become a global trend and this trend is still rising. The video quality is a very significant part from the bundle of multimedia services, which leads to a requirement for quality assessment in the video domain. Video quality of a streamed video across IP networks is generally influenced by two factors “transmission link imperfection and efficiency of compression standards. This paper deals with subjective video quality assessment and the impact of the compression standards H.264, H.265 and VP9 on perceived video quality of these compression standards. The evaluation is done for four full HD sequences, the difference of scenes is in the content“ distinction is based on Spatial (SI) and Temporal (TI) Index of test sequences. Finally, experimental results follow up to 30% bitrate reducing of H.265 and VP9 compared with the reference H.264

    Impact of GoP on the video quality of VP9 compression standard for full HD resolution

    Get PDF
    In the last years, the interest on multimedia services has significantly increased. This leads to requirements for quality assessment, especially in video domain. Compression together with the transmission link imperfection are two main factors that influence the quality. This paper deals with the assessment of the Group of Pictures (GoP) impact on the video quality of VP9 compression standard. The evaluation was done using selected objective and subjective methods for two types of Full HD sequences depending on content. These results are part of a new model that is still being created and will be used for predicting the video quality in networks based on IP

    Data Analysis in Multimedia Quality Assessment: Revisiting the Statistical Tests

    Full text link
    Assessment of multimedia quality relies heavily on subjective assessment, and is typically done by human subjects in the form of preferences or continuous ratings. Such data is crucial for analysis of different multimedia processing algorithms as well as validation of objective (computational) methods for the said purpose. To that end, statistical testing provides a theoretical framework towards drawing meaningful inferences, and making well grounded conclusions and recommendations. While parametric tests (such as t test, ANOVA, and error estimates like confidence intervals) are popular and widely used in the community, there appears to be a certain degree of confusion in the application of such tests. Specifically, the assumption of normality and homogeneity of variance is often not well understood. Therefore, the main goal of this paper is to revisit them from a theoretical perspective and in the process provide useful insights into their practical implications. Experimental results on both simulated and real data are presented to support the arguments made. A software implementing the said recommendations is also made publicly available, in order to achieve the goal of reproducible research

    Video Quality Assessment Methods : A Bird's-eye view

    Get PDF
    The proliferation of multimedia technology and services in today's world provide ample research scope in the frontiers of visual signal processing. Wide spread usage of video based applications in heterogeneous environment needs viable methods of Video Quality Assessment (VQA). The evaluation of video quality not only depends on high QoS requirements but also emphasis the need of novel term 'QoE' (Quality of Experience) that perceive video quality as user centric. This paper discusses two vital video quality assessment methods namely, subjective and objective assessment methods. The evolution of various video quality metrics, their classification models and applications are reviewed in this work. The Mean Opinion Score (MOS) based subjective measurements and algorithm based objective metrics are discussed and their challenges are outlined. Further, this paper explores the recent progress of VQA in emerging technologies such as mobile video and 3D video

    Video Quality Assessment Methods : A Bird's-eye view

    Get PDF
    The proliferation of multimedia technology and services in today's world provide ample research scope in the frontiers of visual signal processing. Wide spread usage of video based applications in heterogeneous environment needs viable methods of Video Quality Assessment (VQA). The evaluation of video quality not only depends on high QoS requirements but also emphasis the need of novel term 'QoE' (Quality of Experience) that perceive video quality as user centric. This paper discusses two vital video quality assessment methods namely, subjective and objective assessment methods. The evolution of various video quality metrics, their classification models and applications are reviewed in this work. The Mean Opinion Score (MOS) based subjective measurements and algorithm based objective metrics are discussed and their challenges are outlined. Further, this paper explores the recent progress of VQA in emerging technologies such as mobile video and 3D video

    Video Quality Assessment Methods : A Bird's-eye view

    Get PDF
    The proliferation of multimedia technology and services in today's world provide ample research scope in the frontiers of visual signal processing. Wide spread usage of video based applications in heterogeneous environment needs viable methods of Video Quality Assessment (VQA). The evaluation of video quality not only depends on high QoS requirements but also emphasis the need of novel term 'QoE' (Quality of Experience) that perceive video quality as user centric. This paper discusses two vital video quality assessment methods namely, subjective and objective assessment methods. The evolution of various video quality metrics, their classification models and applications are reviewed in this work. The Mean Opinion Score (MOS) based subjective measurements and algorithm based objective metrics are discussed and their challenges are outlined. Further, this paper explores the recent progress of VQA in emerging technologies such as mobile video and 3D video

    A generalized Hausdorff distance based quality metric for point cloud geometry

    Full text link
    Reliable quality assessment of decoded point cloud geometry is essential to evaluate the compression performance of emerging point cloud coding solutions and guarantee some target quality of experience. This paper proposes a novel point cloud geometry quality assessment metric based on a generalization of the Hausdorff distance. To achieve this goal, the so-called generalized Hausdorff distance for multiple rankings is exploited to identify the best performing quality metric in terms of correlation with the MOS scores obtained from a subjective test campaign. The experimental results show that the quality metric derived from the classical Hausdorff distance leads to low objective-subjective correlation and, thus, fails to accurately evaluate the quality of decoded point clouds for emerging codecs. However, the quality metric derived from the generalized Hausdorff distance with an appropriately selected ranking, outperforms the MPEG adopted geometry quality metrics when decoded point clouds with different types of coding distortions are considered.Comment: This article is accepted to 12th International Conference on Quality of Multimedia Experience (QoMEX

    Screen-based 3D Subjective Experiment Software

    Full text link
    Recently, widespread 3D graphics (e.g., point clouds and meshes) have drawn considerable efforts from academia and industry to assess their perceptual quality by conducting subjective experiments. However, lacking a handy software for 3D subjective experiments complicates the construction of 3D graphics quality assessment datasets, thus hindering the prosperity of relevant fields. In this paper, we develop a powerful platform with which users can flexibly design their 3D subjective methodologies and build high-quality datasets, easing a broad spectrum of 3D graphics subjective quality study. To accurately illustrate the perceptual quality differences of 3D stimuli, our software can simultaneously render the source stimulus and impaired stimulus and allows both stimuli to respond synchronously to viewer interactions. Compared with amateur 3D visualization tool-based or image/video rendering-based schemes, our approach embodies typical 3D applications while minimizing cognitive overload during subjective experiments. We organized a subjective experiment involving 40 participants to verify the validity of the proposed software. Experimental analyses demonstrate that subjective tests on our software can produce reasonable subjective quality scores of 3D models. All resources in this paper can be found at https://openi.pcl.ac.cn/OpenDatasets/3DQA.Comment: Accepted to ACM Multimedia 202

    Systematic Analysis of Experiment Precision Measures and Methods for Experiments Comparison

    Full text link
    The notion of experiment precision quantifies the variance of user ratings in a subjective experiment. Although there exist measures that assess subjective experiment precision, there are no systematic analyses of these measures available in the literature. To the best of our knowledge, there is also no systematic framework in the Multimedia Quality Assessment field for comparing subjective experiments in terms of their precision. Therefore, the main idea of this paper is to propose a framework for comparing subjective experiments in the field of MQA based on appropriate experiment precision measures. We present three experiment precision measures and three related experiment precision comparison methods. We systematically analyse the performance of the measures and methods proposed. We do so both through a simulation study (varying user rating variance and bias) and by using data from four real-world Quality of Experience (QoE) subjective experiments. In the simulation study we focus on crowdsourcing QoE experiments, since they are known to generate ratings with higher variance and bias, when compared to traditional subjective experiment methodologies. We conclude that our proposed measures and related comparison methods properly capture experiment precision (both when tested on simulated and real-world data). One of the measures also proves capable of dealing with even significantly biased responses. We believe our experiment precision assessment framework will help compare different subjective experiment methodologies. For example, it may help decide which methodology results in more precise user ratings. This may potentially inform future standardisation activities.Comment: 18 pages, 9 figures. Under review in IEEE Transactions on Multimedia. More results and references added. Improved style. Discussion section and appendices extende
    • 

    corecore