3,996 research outputs found

    Incremental Maintenance of Maximal Cliques in a Dynamic Graph

    Full text link
    We consider the maintenance of the set of all maximal cliques in a dynamic graph that is changing through the addition or deletion of edges. We present nearly tight bounds on the magnitude of change in the set of maximal cliques, as well as the first change-sensitive algorithms for clique maintenance, whose runtime is proportional to the magnitude of the change in the set of maximal cliques. We present experimental results showing these algorithms are efficient in practice and are faster than prior work by two to three orders of magnitude.Comment: 18 pages, 8 figure

    All Maximal Independent Sets and Dynamic Dominance for Sparse Graphs

    Full text link
    We describe algorithms, based on Avis and Fukuda's reverse search paradigm, for listing all maximal independent sets in a sparse graph in polynomial time and delay per output. For bounded degree graphs, our algorithms take constant time per set generated; for minor-closed graph families, the time is O(n) per set, and for more general sparse graph families we achieve subquadratic time per set. We also describe new data structures for maintaining a dynamic vertex set S in a sparse or minor-closed graph family, and querying the number of vertices not dominated by S; for minor-closed graph families the time per update is constant, while it is sublinear for any sparse graph family. We can also maintain a dynamic vertex set in an arbitrary m-edge graph and test the independence of the maintained set in time O(sqrt m) per update. We use the domination data structures as part of our enumeration algorithms.Comment: 10 page

    Shared Memory Parallel Subgraph Enumeration

    Full text link
    The subgraph enumeration problem asks us to find all subgraphs of a target graph that are isomorphic to a given pattern graph. Determining whether even one such isomorphic subgraph exists is NP-complete---and therefore finding all such subgraphs (if they exist) is a time-consuming task. Subgraph enumeration has applications in many fields, including biochemistry and social networks, and interestingly the fastest algorithms for solving the problem for biochemical inputs are sequential. Since they depend on depth-first tree traversal, an efficient parallelization is far from trivial. Nevertheless, since important applications produce data sets with increasing difficulty, parallelism seems beneficial. We thus present here a shared-memory parallelization of the state-of-the-art subgraph enumeration algorithms RI and RI-DS (a variant of RI for dense graphs) by Bonnici et al. [BMC Bioinformatics, 2013]. Our strategy uses work stealing and our implementation demonstrates a significant speedup on real-world biochemical data---despite a highly irregular data access pattern. We also improve RI-DS by pruning the search space better; this further improves the empirical running times compared to the already highly tuned RI-DS.Comment: 18 pages, 12 figures, To appear at the 7th IEEE Workshop on Parallel / Distributed Computing and Optimization (PDCO 2017

    DDSL: Efficient Subgraph Listing on Distributed and Dynamic Graphs

    Full text link
    Subgraph listing is a fundamental problem in graph theory and has wide applications in areas like sociology, chemistry, and social networks. Modern graphs can usually be large-scale as well as highly dynamic, which challenges the efficiency of existing subgraph listing algorithms. Recent works have shown the benefits of partitioning and processing big graphs in a distributed system, however, there is only few work targets subgraph listing on dynamic graphs in a distributed environment. In this paper, we propose an efficient approach, called Distributed and Dynamic Subgraph Listing (DDSL), which can incrementally update the results instead of running from scratch. DDSL follows a general distributed join framework. In this framework, we use a Neighbor-Preserved storage for data graphs, which takes bounded extra space and supports dynamic updating. After that, we propose a comprehensive cost model to estimate the I/O cost of listing subgraphs. Then based on this cost model, we develop an algorithm to find the optimal join tree for a given pattern. To handle dynamic graphs, we propose an efficient left-deep join algorithm to incrementally update the join results. Extensive experiments are conducted on real-world datasets. The results show that DDSL outperforms existing methods in dealing with both static dynamic graphs in terms of the responding time

    Shared-Memory Parallel Maximal Clique Enumeration

    Get PDF
    We present shared-memory parallel methods for Maximal Clique Enumeration (MCE) from a graph. MCE is a fundamental and well-studied graph analytics task, and is a widely used primitive for identifying dense structures in a graph. Due to its computationally intensive nature, parallel methods are imperative for dealing with large graphs. However, surprisingly, there do not yet exist scalable and parallel methods for MCE on a shared-memory parallel machine. In this work, we present efficient shared-memory parallel algorithms for MCE, with the following properties: (1) the parallel algorithms are provably work-efficient relative to a state-of-the-art sequential algorithm (2) the algorithms have a provably small parallel depth, showing that they can scale to a large number of processors, and (3) our implementations on a multicore machine shows a good speedup and scaling behavior with increasing number of cores, and are substantially faster than prior shared-memory parallel algorithms for MCE.Comment: 10 pages, 3 figures, proceedings of the 25th IEEE International Conference on. High Performance Computing, Data, and Analytics (HiPC), 201

    Finding Induced Subgraphs via Minimal Triangulations

    Get PDF
    Potential maximal cliques and minimal separators are combinatorial objects which were introduced and studied in the realm of minimal triangulations problems including Minimum Fill-in and Treewidth. We discover unexpected applications of these notions to the field of moderate exponential algorithms. In particular, we show that given an n-vertex graph G together with its set of potential maximal cliques Pi_G, and an integer t, it is possible in time |Pi_G| * n^(O(t)) to find a maximum induced subgraph of treewidth t in G; and for a given graph F of treewidth t, to decide if G contains an induced subgraph isomorphic to F. Combined with an improved algorithm enumerating all potential maximal cliques in time O(1.734601^n), this yields that both problems are solvable in time 1.734601^n * n^(O(t)).Comment: 14 page
    corecore