1,913 research outputs found

    Subgoals, Problem Solving Phases, and Sources of Knowledge: A Complex Mangle

    Full text link
    Educational researchers have increasingly drawn attention to how students develop computational thinking (CT) skills, including in science, math, and literacy contexts. A key component of CT is the process of abstraction, a particularly challenging concept for novice programmers, but one vital to problem solving. We propose a framework based on situated cognition that can be used to document how instructors and students communicate about abstractions during the problem solving process. We develop this framework in a multimodal interaction analysis of a 32-minute long excerpt of a middle school student working in the PixelBots JavaScript programming environment at a two-week summer programming workshop taught by undergraduate CS majors. Through a microgenetic analysis of the process of teaching and learning about abstraction in this excerpt, we document the extemporaneous prioritization of subgoals and the back-and-forth coordination of problem solving phases. In our case study, we identify that (a) problem solving phases are nested with several instances of context-switching within a single phase; (b) the introduction of new ideas and information create bridges or opportunities to move between different problem solving phases; (c) planning to solve a problem is a non-linear process; and (d) pedagogical moves such as modeling and prompting highlight situated resources and advance problem solving. Future research should address how to help students structure subgoals and reflect on connections between problem solving phases, and how to help instructors reflect on their routes to supporting students in the problem solving process.Comment: ACM Student Research Competition (SRC) submission in Proceedings of the 50th ACM Technical Symposium on Computer Science Education (SIGCSE '19); 3 pages; Poster: https://docs.google.com/drawings/d/1OrfWGp7-o8sI7KJyx4-leY-A8TioXP1IQFKNBDceht4/edit?usp=sharin

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    Collaborative design : managing task interdependencies and multiple perspectives

    Get PDF
    This paper focuses on two characteristics of collaborative design with respect to cooperative work: the importance of work interdependencies linked to the nature of design problems; and the fundamental function of design cooperative work arrangement which is the confrontation and combination of perspectives. These two intrinsic characteristics of the design work stress specific cooperative processes: coordination processes in order to manage task interdependencies, establishment of common ground and negotiation mechanisms in order to manage the integration of multiple perspectives in design

    Variability of worked examples and transfer of geometrical problem-solving skills : a cognitive-load approach

    Get PDF
    Four computer-based training strategies for geometrical problem solving in the domain of computer numerically controlled machinery programming were studied with regard to their effects on training performance, transfer performance, and cognitive load. A low- and a high-variability conventional condition, in which conventional practice problems had to be solved (followed by worked examples), were compared with a low- and a high-variability worked condition, in which worked examples had to be studied. Results showed that students who studied worked examples gained most from high-variability examples, invested less time and mental effort in practice, and attained better and less effort-demanding transfer performance than students who first attempted to solve conventional problems and then studied work examples

    A critical rationalist approach to organizational learning: testing the theories held by managers

    Get PDF
    The common wisdom is that Popper's critical rationalism, a method aimed at knowledge validation through falsification of theories, is inadequate for managers in organizations. This study falsifies this argument in three phases: first, it specifies the obstructers that prevent the method from being employed; second, the critical rationalist method is adapted for strategic management purposes; last, the method and the hypotheses are tested via action research. Conclusions are that once the obstructers are omitted the method is applicable and effective

    Cognitive architectures as Lakatosian research programmes: two case studies

    Get PDF
    Cognitive architectures - task-general theories of the structure and function of the complete cognitive system - are sometimes argued to be more akin to frameworks or belief systems than scientific theories. The argument stems from the apparent non-falsifiability of existing cognitive architectures. Newell was aware of this criticism and argued that architectures should be viewed not as theories subject to Popperian falsification, but rather as Lakatosian research programs based on cumulative growth. Newell's argument is undermined because he failed to demonstrate that the development of Soar, his own candidate architecture, adhered to Lakatosian principles. This paper presents detailed case studies of the development of two cognitive architectures, Soar and ACT-R, from a Lakatosian perspective. It is demonstrated that both are broadly Lakatosian, but that in both cases there have been theoretical progressions that, according to Lakatosian criteria, are pseudo-scientific. Thus, Newell's defense of Soar as a scientific rather than pseudo-scientific theory is not supported in practice. The ACT series of architectures has fewer pseudo-scientific progressions than Soar, but it too is vulnerable to accusations of pseudo-science. From this analysis, it is argued that successive versions of theories of the human cognitive architecture must explicitly address five questions to maintain scientific credibility

    An analysis of the application of AI to the development of intelligent aids for flight crew tasks

    Get PDF
    This report presents the results of a study aimed at developing a basis for applying artificial intelligence to the flight deck environment of commercial transport aircraft. In particular, the study was comprised of four tasks: (1) analysis of flight crew tasks, (2) survey of the state-of-the-art of relevant artificial intelligence areas, (3) identification of human factors issues relevant to intelligent cockpit aids, and (4) identification of artificial intelligence areas requiring further research

    An expert system for project controls in construction management

    Get PDF
    In this paper, I describe an expert project control system for construction management. The purpose of the project is to develop methods and strategies for expert system based planning, scheduling, chronicling and analysis for construction management. Planning defines the actions required to accomplish a goal? scheduling links the plan into a frame of time? chronicling is monitoring job performance and analysis defines reevaluation of the plan as conditions change. Conditions are modeled as constraints and will be coded as rules. As conditions change, constraints must be dynamically modified by the system to accommodate the changes. The research is a combination of three related areas: a. Domain dependent hierarchical planning techniques. b. Model-based planning/scheduling techniques developed for the job-shop environment. c. Expert construction planning/scheduling techniques
    corecore