3,287 research outputs found

    Subgame-Perfect Equilibria in Stochastic Timing Games

    Full text link
    We introduce a notion of subgames for stochastic timing games and the related notion of subgame-perfect equilibrium in possibly mixed strategies. While a good notion of subgame-perfect equilibrium for continuous-time games is not available in general, we argue that our model is the appropriate version for timing games. We show that the notion coincides with the usual one for discrete-time games. Many timing games in continuous time have only equilibria in mixed strategies -- in particular preemption games, which often occur in the strategic real option literature. We provide a sound foundation for some workhorse equilibria of that literature, which has been lacking as we show. We obtain a general constructive existence result for subgame-perfect equilibria in preemption games and illustrate our findings by several explicit applications.Comment: 27 pages, 1 figur

    Subgame-Perfect Equilibria in Stochastic Timing Games

    Get PDF
    Riedel F, Steg J-H. Subgame-Perfect Equilibria in Stochastic Timing Games. Center for Mathematical Economics Working Papers. Vol 524. Bielefeld: Center for Mathematical Economics; 2014.We introduce a notion of subgames for stochastic timing games and the related notion of subgame-perfect equilibrium in possibly mixed strategies. While a good notion of subgame-perfect equilibrium for continuous-time games is not available in general, we argue that our model is the appropriate version for timing games. We show that the notion coincides with the usual one for discrete-time games. Many timing games in continuous time have only equilibria in mixed strategies – in particular preemption games, which often occur in the strategic real option literature. We provide a sound foundation for some workhorse equilibria of that literature, which has been lacking as we show. We obtain a general constructive existence result for subgame-perfect equilibria in preemption games and illustrate our findings by several explicit applications

    Subgame-perfect equilibria in stochastic timing games

    Get PDF
    Abstract: We develop a notion of subgames and the related notion of subgame-perfect equilibrium – possibly in mixed strategies – for stochastic timing games. To capture all situations that can arise in continuous-time models, it is necessary to consider stopping times as the starting dates of subgames. We generalize Fudenberg and Tirole’s (1985) mixed-strategy extensions to make them applicable to stochastic timing games and thereby provide a sound basis for subgame-perfect equilibria of preemption games. Sufficient conditions for equilibrium existence are presented, and examples illustrate their application as well as the fact that intuitive arguments can break down in the presence of stochastic processes with jumps

    Pure Subgame-Perfect Equilibria in Free Transition Games

    Get PDF
    We consider a class of stochastic games, where each state is identified with a player. At any moment during play, one of the players is called active. The active player can terminate the game, or he can announce any player, who then becomes the active player. There is a non-negative payoff for each player upon termination of the game, which depends only on the player who decided to terminate. We give a combinatorial proof of the existence of subgame-perfect equilibria in pure strategies for the games in our class.mathematical economics;

    Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games

    Get PDF
    Probabilistic model checking for stochastic games enables formal verification of systems that comprise competing or collaborating entities operating in a stochastic environment. Despite good progress in the area, existing approaches focus on zero-sum goals and cannot reason about scenarios where entities are endowed with different objectives. In this paper, we propose probabilistic model checking techniques for concurrent stochastic games based on Nash equilibria. We extend the temporal logic rPATL (probabilistic alternating-time temporal logic with rewards) to allow reasoning about players with distinct quantitative goals, which capture either the probability of an event occurring or a reward measure. We present algorithms to synthesise strategies that are subgame perfect social welfare optimal Nash equilibria, i.e., where there is no incentive for any players to unilaterally change their strategy in any state of the game, whilst the combined probabilities or rewards are maximised. We implement our techniques in the PRISM-games tool and apply them to several case studies, including network protocols and robot navigation, showing the benefits compared to existing approaches

    Dynamic Games with Almost Perfect Information

    Get PDF
    This paper aims to solve two fundamental problems on finite or infinite horizon dynamic games with perfect or almost perfect information. Under some mild conditions, we prove (1) the existence of subgame-perfect equilibria in general dynamic games with almost perfect information, and (2) the existence of pure-strategy subgame-perfect equilibria in perfect-information dynamic games with uncertainty. Our results go beyond previous works on continuous dynamic games in the sense that public randomization and the continuity requirement on the state variables are not needed. As an illustrative application, a dynamic stochastic oligopoly market with intertemporally dependent payoffs is considered

    Extensive-form games and strategic complementarities

    Get PDF
    I prove the subgame-perfect equivalent of the basic result for Nash equilibria in normal-form games of strategic complements: the set of subgame-perfect equilibria is a nonempty, complete lattice—in particular, subgame-perfect Nash equilibria exist. For this purpose I introduce a device that allows the study of the set of subgame-perfect equilibria as the set of fixed points of a correspondence. My results are limited because extensive-form games of strategic complementarities turn out—surprisingly—to be a very restrictive class of games
    corecore