107 research outputs found

    List Locally Surjective Homomorphisms in Hereditary Graph Classes

    Get PDF
    A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H) that is surjective in the neighborhood of each vertex in G. In the list locally surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance consists of a graph G whose every vertex is equipped with a subset of V(H), called list. We ask for the existence of a locally surjective homomorphism from G to H, where every vertex of G is mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem in F-free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to understand for which pairs (H,F) the problem can be solved in subexponential time. We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be solved in subexponential time in F-free graphs for F being a bounded-degree forest, unless the ETH fails. The initial study reveals that a natural subfamily of bounded-degree forests F, that might lead to some tractability results, is the family ? consisting of forests whose every component has at most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that are polynomial-time solvable in general graphs, the graphs H ? {P?,C?} are the only connected ones that allow for a subexponential-time algorithm in F-free graphs for every F ? ? (unless the ETH fails)

    Complexity of the List Homomorphism Problem in Hereditary Graph Classes

    Get PDF
    A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). For a fixed graph H, in the list homomorphism problem, denoted by LHom(H), we are given a graph G, whose every vertex v is equipped with a list L(v) ? V(H). We ask if there exists a homomorphism f from G to H, in which f(v) ? L(v) for every v ? V(G). Feder, Hell, and Huang [JGT 2003] proved that LHom(H) is polynomial time-solvable if H is a so-called bi-arc-graph, and NP-complete otherwise. We are interested in the complexity of the LHom(H) problem in F-free graphs, i.e., graphs excluding a copy of some fixed graph F as an induced subgraph. It is known that if F is connected and is not a path nor a subdivided claw, then for every non-bi-arc graph the LHom(H) problem is NP-complete and cannot be solved in subexponential time, unless the ETH fails. We consider the remaining cases for connected graphs F. If F is a path, we exhibit a full dichotomy. We define a class called predacious graphs and show that if H is not predacious, then for every fixed t the LHom(H) problem can be solved in quasi-polynomial time in P_t-free graphs. On the other hand, if H is predacious, then there exists t, such that the existence of a subexponential-time algorithm for LHom(H) in P_t-free graphs would violate the ETH. If F is a subdivided claw, we show a full dichotomy in two important cases: for H being irreflexive (i.e., with no loops), and for H being reflexive (i.e., where every vertex has a loop). Unless the ETH fails, for irreflexive H the LHom(H) problem can be solved in subexponential time in graphs excluding a fixed subdivided claw if and only if H is non-predacious and triangle-free. On the other hand, if H is reflexive, then LHom(H) cannot be solved in subexponential time whenever H is not a bi-arc graph

    Finding Large H-Colorable Subgraphs in Hereditary Graph Classes

    Get PDF
    We study the \textsc{Max Partial HH-Coloring} problem: given a graph GG, find the largest induced subgraph of GG that admits a homomorphism into HH, where HH is a fixed pattern graph without loops. Note that when HH is a complete graph on kk vertices, the problem reduces to finding the largest induced kk-colorable subgraph, which for k=2k=2 is equivalent (by complementation) to \textsc{Odd Cycle Transversal}. We prove that for every fixed pattern graph HH without loops, \textsc{Max Partial HH-Coloring} can be solved: \bullet in {P5,F}\{P_5,F\}-free graphs in polynomial time, whenever FF is a threshold graph; \bullet in {P5,bull}\{P_5,\textrm{bull}\}-free graphs in polynomial time; \bullet in P5P_5-free graphs in time nO(ω(G))n^{\mathcal{O}(\omega(G))}; \bullet in {P6,1-subdivided claw}\{P_6,\textrm{1-subdivided claw}\}-free graphs in time nO(ω(G)3)n^{\mathcal{O}(\omega(G)^3)}. Here, nn is the number of vertices of the input graph GG and ω(G)\omega(G) is the maximum size of a clique in~GG. Furthermore, combining the mentioned algorithms for P5P_5-free and for {P6,1-subdivided claw}\{P_6,\textrm{1-subdivided claw}\}-free graphs with a simple branching procedure, we obtain subexponential-time algorithms for \textsc{Max Partial HH-Coloring} in these classes of graphs. Finally, we show that even a restricted variant of \textsc{Max Partial HH-Coloring} is NP\mathsf{NP}-hard in the considered subclasses of P5P_5-free graphs, if we allow loops on HH

    2-Server PIR with sub-polynomial communication

    Full text link
    A 2-server Private Information Retrieval (PIR) scheme allows a user to retrieve the iith bit of an nn-bit database replicated among two servers (which do not communicate) while not revealing any information about ii to either server. In this work we construct a 1-round 2-server PIR with total communication cost nO(loglogn/logn)n^{O({\sqrt{\log\log n/\log n}})}. This improves over the currently known 2-server protocols which require O(n1/3)O(n^{1/3}) communication and matches the communication cost of known 3-server PIR schemes. Our improvement comes from reducing the number of servers in existing protocols, based on Matching Vector Codes, from 3 or 4 servers to 2. This is achieved by viewing these protocols in an algebraic way (using polynomial interpolation) and extending them using partial derivatives

    On space efficiency of algorithms working on structural decompositions of graphs

    Get PDF
    Dynamic programming on path and tree decompositions of graphs is a technique that is ubiquitous in the field of parameterized and exponential-time algorithms. However, one of its drawbacks is that the space usage is exponential in the decomposition's width. Following the work of Allender et al. [Theory of Computing, '14], we investigate whether this space complexity explosion is unavoidable. Using the idea of reparameterization of Cai and Juedes [J. Comput. Syst. Sci., '03], we prove that the question is closely related to a conjecture that the Longest Common Subsequence problem parameterized by the number of input strings does not admit an algorithm that simultaneously uses XP time and FPT space. Moreover, we complete the complexity landscape sketched for pathwidth and treewidth by Allender et al. by considering the parameter tree-depth. We prove that computations on tree-depth decompositions correspond to a model of non-deterministic machines that work in polynomial time and logarithmic space, with access to an auxiliary stack of maximum height equal to the decomposition's depth. Together with the results of Allender et al., this describes a hierarchy of complexity classes for polynomial-time non-deterministic machines with different restrictions on the access to working space, which mirrors the classic relations between treewidth, pathwidth, and tree-depth.Comment: An extended abstract appeared in the proceedings of STACS'16. The new version is augmented with a space-efficient algorithm for Dominating Set using the Chinese remainder theore

    Full Complexity Classification of the List Homomorphism Problem for Bounded-Treewidth Graphs

    Get PDF
    A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). Let H be a fixed graph with possible loops. In the list homomorphism problem, denoted by LHom(H), we are given a graph G, whose every vertex v is assigned with a list L(v) of vertices of H. We ask whether there exists a homomorphism h from G to H, which respects lists L, i.e., for every v ? V(G) it holds that h(v) ? L(v). The complexity dichotomy for LHom(H) was proven by Feder, Hell, and Huang [JGT 2003]. The authors showed that the problem is polynomial-time solvable if H belongs to the class called bi-arc graphs, and for all other graphs H it is NP-complete. We are interested in the complexity of the LHom(H) problem, parameterized by the treewidth of the input graph. This problem was investigated by Egri, Marx, and Rz??ewski [STACS 2018], who obtained tight complexity bounds for the special case of reflexive graphs H, i.e., if every vertex has a loop. In this paper we extend and generalize their results for all relevant graphs H, i.e., those, for which the LHom(H) problem is NP-hard. For every such H we find a constant k = k(H), such that the LHom(H) problem on instances G with n vertices and treewidth t - can be solved in time k^t ? n^?(1), provided that G is given along with a tree decomposition of width t, - cannot be solved in time (k-?)^t ? n^?(1), for any ? > 0, unless the SETH fails. For some graphs H the value of k(H) is much smaller than the trivial upper bound, i.e., |V(H)|. Obtaining matching upper and lower bounds shows that the set of algorithmic tools that we have discovered cannot be extended in order to obtain faster algorithms for LHom(H) in bounded-treewidth graphs. Furthermore, neither the algorithm, nor the proof of the lower bound, is very specific to treewidth. We believe that they can be used for other variants of the LHom(H) problem, e.g. with different parameterizations

    SL2 homomorphic hash functions: Worst case to average case reduction and short collision search

    Get PDF
    We study homomorphic hash functions into SL(2,q), the 2x2 matrices with determinant 1 over the field with qq elements. Modulo a well supported number theoretic hypothesis, which holds in particular for concrete homomorphisms proposed thus far, we provide a worst case to average case reduction for these hash functions: upto a logarithmic factor, a random homomorphism is as secure as _any_ concrete homomorphism. For a family of homomorphisms containing several concrete proposals in the literature, we prove that collisions of length O(log(q)) can be found in running time O(sqrt(q)). For general homomorphisms we offer an algorithm that, heuristically and according to experiments, in running time O(sqrt(q)) finds collisions of length O(log(q)) for q even, and length O(log^2(q)/loglog(q))$ for arbitrary q. While exponetial time, our algorithms are faster in practice than all earlier generic algorithms, and produce much shorter collisions
    corecore