12 research outputs found

    Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds

    Full text link
    We develop exterior calculus approaches for partial differential equations on radial manifolds. We introduce numerical methods that approximate with spectral accuracy the exterior derivative d\mathbf{d}, Hodge star ⋆\star, and their compositions. To achieve discretizations with high precision and symmetry, we develop hyperinterpolation methods based on spherical harmonics and Lebedev quadrature. We perform convergence studies of our numerical exterior derivative operator dβ€Ύ\overline{\mathbf{d}} and Hodge star operator ⋆‾\overline{\star} showing each converge spectrally to d\mathbf{d} and ⋆\star. We show how the numerical operators can be naturally composed to formulate general numerical approximations for solving differential equations on manifolds. We present results for the Laplace-Beltrami equations demonstrating our approach.Comment: 22 pages, 13 figure

    Compression for Smooth Shape Analysis

    Full text link
    Most 3D shape analysis methods use triangular meshes to discretize both the shape and functions on it as piecewise linear functions. With this representation, shape analysis requires fine meshes to represent smooth shapes and geometric operators like normals, curvatures, or Laplace-Beltrami eigenfunctions at large computational and memory costs. We avoid this bottleneck with a compression technique that represents a smooth shape as subdivision surfaces and exploits the subdivision scheme to parametrize smooth functions on that shape with a few control parameters. This compression does not affect the accuracy of the Laplace-Beltrami operator and its eigenfunctions and allow us to compute shape descriptors and shape matchings at an accuracy comparable to triangular meshes but a fraction of the computational cost. Our framework can also compress surfaces represented by point clouds to do shape analysis of 3D scanning data

    Subdivision Directional Fields

    Full text link
    We present a novel linear subdivision scheme for face-based tangent directional fields on triangle meshes. Our subdivision scheme is based on a novel coordinate-free representation of directional fields as halfedge-based scalar quantities, bridging the finite-element representation with discrete exterior calculus. By commuting with differential operators, our subdivision is structure-preserving: it reproduces curl-free fields precisely, and reproduces divergence-free fields in the weak sense. Moreover, our subdivision scheme directly extends to directional fields with several vectors per face by working on the branched covering space. Finally, we demonstrate how our scheme can be applied to directional-field design, advection, and robust earth mover's distance computation, for efficient and robust computation

    Discrete differential operators on polygonal meshes

    Get PDF
    Geometry processing of surface meshes relies heavily on the discretization of differential operators such as gradient, Laplacian, and covariant derivative. While a variety of discrete operators over triangulated meshes have been developed and used for decades, a similar construction over polygonal meshes remains far less explored despite the prevalence of non-simplicial surfaces in geometric design and engineering applications. This paper introduces a principled construction of discrete differential operators on surface meshes formed by (possibly non-flat and non-convex) polygonal faces. Our approach is based on a novel mimetic discretization of the gradient operator that is linear-precise on arbitrary polygons. Equipped with this discrete gradient, we draw upon ideas from the Virtual Element Method in order to derive a series of discrete operators commonly used in graphics that are now valid over polygonal surfaces. We demonstrate the accuracy and robustness of our resulting operators through various numerical examples, before incorporating them into existing geometry processing algorithms

    Operator-adapted wavelets for finite-element differential forms

    Get PDF
    We introduce in this paper an operator-adapted multiresolution analysis for finite-element differential forms. From a given continuous, linear, bijective, and self-adjoint positive-definite operator L, a hierarchy of basis functions and associated wavelets for discrete differential forms is constructed in a fine-to-coarse fashion and in quasilinear time. The resulting wavelets are L-orthogonal across all scales, and can be used to derive a Galerkin discretization of the operator such that its stiffness matrix becomes block-diagonal, with uniformly well-conditioned and sparse blocks. Because our approach applies to arbitrary differential p-forms, we can derive both scalar-valued and vector-valued wavelets block-diagonalizing a prescribed operator. We also discuss the generality of the construction by pointing out that it applies to various types of computational grids, offers arbitrary smoothness orders of basis functions and wavelets, and can accommodate linear differential constraints such as divergence-freeness. Finally, we demonstrate the benefits of the corresponding operator-adapted multiresolution decomposition for coarse-graining and model reduction of linear and non-linear partial differential equations

    Prospects for Declarative Mathematical Modeling of Complex Biological Systems

    Full text link
    Declarative modeling uses symbolic expressions to represent models. With such expressions one can formalize high-level mathematical computations on models that would be difficult or impossible to perform directly on a lower-level simulation program, in a general-purpose programming language. Examples of such computations on models include model analysis, relatively general-purpose model-reduction maps, and the initial phases of model implementation, all of which should preserve or approximate the mathematical semantics of a complex biological model. The potential advantages are particularly relevant in the case of developmental modeling, wherein complex spatial structures exhibit dynamics at molecular, cellular, and organogenic levels to relate genotype to multicellular phenotype. Multiscale modeling can benefit from both the expressive power of declarative modeling languages and the application of model reduction methods to link models across scale. Based on previous work, here we define declarative modeling of complex biological systems by defining the operator algebra semantics of an increasingly powerful series of declarative modeling languages including reaction-like dynamics of parameterized and extended objects; we define semantics-preserving implementation and semantics-approximating model reduction transformations; and we outline a "meta-hierarchy" for organizing declarative models and the mathematical methods that can fruitfully manipulate them

    Operator-adapted wavelets for finite-element differential forms

    Get PDF
    We introduce in this paper an operator-adapted multiresolution analysis for finite-element differential forms. From a given continuous, linear, bijective, and self-adjoint positive-definite operator L, a hierarchy of basis functions and associated wavelets for discrete differential forms is constructed in a fine-to-coarse fashion and in quasilinear time. The resulting wavelets are L-orthogonal across all scales, and can be used to derive a Galerkin discretization of the operator such that its stiffness matrix becomes block-diagonal, with uniformly well-conditioned and sparse blocks. Because our approach applies to arbitrary differential p-forms, we can derive both scalar-valued and vector-valued wavelets block-diagonalizing a prescribed operator. We also discuss the generality of the construction by pointing out that it applies to various types of computational grids, offers arbitrary smoothness orders of basis functions and wavelets, and can accommodate linear differential constraints such as divergence-freeness. Finally, we demonstrate the benefits of the corresponding operator-adapted multiresolution decomposition for coarse-graining and model reduction of linear and non-linear partial differential equations
    corecore