5,950 research outputs found

    H\"older Regularity of Geometric Subdivision Schemes

    Full text link
    We present a framework for analyzing non-linear Rd\mathbb{R}^d-valued subdivision schemes which are geometric in the sense that they commute with similarities in Rd\mathbb{R}^d. It admits to establish C1,Ī±C^{1,\alpha}-regularity for arbitrary schemes of this type, and C2,Ī±C^{2,\alpha}-regularity for an important subset thereof, which includes all real-valued schemes. Our results are constructive in the sense that they can be verified explicitly for any scheme and any given set of initial data by a universal procedure. This procedure can be executed automatically and rigorously by a computer when using interval arithmetics.Comment: 31 pages, 1 figur

    A global approach to the refinement of manifold data

    Full text link
    A refinement of manifold data is a computational process, which produces a denser set of discrete data from a given one. Such refinements are closely related to multiresolution representations of manifold data by pyramid transforms, and approximation of manifold-valued functions by repeated refinements schemes. Most refinement methods compute each refined element separately, independently of the computations of the other elements. Here we propose a global method which computes all the refined elements simultaneously, using geodesic averages. We analyse repeated refinements schemes based on this global approach, and derive conditions guaranteeing strong convergence.Comment: arXiv admin note: text overlap with arXiv:1407.836

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe

    Algorithms and error bounds for multivariate piecewise constant approximation

    Get PDF
    We review the surprisingly rich theory of approximation of functions of many vari- ables by piecewise constants. This covers for example the Sobolev-PoincarĀ“e inequalities, parts of the theory of nonlinear approximation, Haar wavelets and tree approximation, as well as recent results about approximation orders achievable on anisotropic partitions

    Learning single-image 3D reconstruction by generative modelling of shape, pose and shading

    Get PDF
    We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation of new 3D shape samples. These tasks have received considerable attention recently; however, most existing approaches rely on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object instance. Our framework is very general: it can be trained in similar settings to existing approaches, while also supporting weaker supervision. Importantly, it can be trained purely from 2D images, without pose annotations, and with only a single view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us to reason over lighting parameters and exploit shading information during training, which previous 2D-supervised methods cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach in various settings, showing that: (i) it learns to disentangle shape from pose and lighting; (ii) using shading in the loss improves performance compared to just silhouettes; (iii) when using a standard single white light, our model outperforms state-of-the-art 2D-supervised methods, both with and without pose supervision, thanks to exploiting shading cues; (iv) performance improves further when using multiple coloured lights, even approaching that of state-of-the-art 3D-supervised methods; (v) shapes produced by our model capture smooth surfaces and fine details better than voxel-based approaches; and (vi) our approach supports concave classes such as bathtubs and sofas, which methods based on silhouettes cannot learn.Comment: Extension of arXiv:1807.09259, accepted to IJCV. Differentiable renderer available at https://github.com/pmh47/dir
    • ā€¦
    corecore