1,336 research outputs found

    Power Allocation for Adaptive OFDM Index Modulation in Cooperative Networks

    Full text link
    In this paper, we propose a power allocation strategy for the adaptive orthogonal frequency-division multiplexing (OFDM) index modulation (IM) in cooperative networks. The allocation strategy is based on the Karush-Kuhn-Tucker (KKT) conditions, and aims at maximizing the average network capacity according to the instantaneous channel state information (CSI). As the transmit power at source and relay is constrained separately, we can thus formulate an optimization problem by allocating power to active subcarriers. Compared to the conventional uniform power allocation strategy, the proposed dynamic strategy can lead to a higher average network capacity, especially in the low signal-to-noise ratio (SNR) region. The analysis is also verified by numerical results produced by Monte Carlo simulations. By applying the proposed power allocation strategy, the efficiency of adaptive OFDM IM can be enhanced in practice, which paves the way for its implementation in the future, especially for cell-edge communications

    Efficient Detectors for MIMO-OFDM Systems under Spatial Correlation Antenna Arrays

    Full text link
    This work analyzes the performance of the implementable detectors for multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) technique under specific and realistic operation system condi- tions, including antenna correlation and array configuration. Time-domain channel model has been used to evaluate the system performance under realistic communication channel and system scenarios, including different channel correlation, modulation order and antenna arrays configurations. A bunch of MIMO-OFDM detectors were analyzed for the purpose of achieve high performance combined with high capacity systems and manageable computational complexity. Numerical Monte-Carlo simulations (MCS) demonstrate the channel selectivity effect, while the impact of the number of antennas, adoption of linear against heuristic-based detection schemes, and the spatial correlation effect under linear and planar antenna arrays are analyzed in the MIMO-OFDM context.Comment: 26 pgs, 16 figures and 5 table

    A survey on fiber nonlinearity compensation for 400 Gbps and beyond optical communication systems

    Full text link
    Optical communication systems represent the backbone of modern communication networks. Since their deployment, different fiber technologies have been used to deal with optical fiber impairments such as dispersion-shifted fibers and dispersion-compensation fibers. In recent years, thanks to the introduction of coherent detection based systems, fiber impairments can be mitigated using digital signal processing (DSP) algorithms. Coherent systems are used in the current 100 Gbps wavelength-division multiplexing (WDM) standard technology. They allow the increase of spectral efficiency by using multi-level modulation formats, and are combined with DSP techniques to combat the linear fiber distortions. In addition to linear impairments, the next generation 400 Gbps/1 Tbps WDM systems are also more affected by the fiber nonlinearity due to the Kerr effect. At high input power, the fiber nonlinear effects become more important and their compensation is required to improve the transmission performance. Several approaches have been proposed to deal with the fiber nonlinearity. In this paper, after a brief description of the Kerr-induced nonlinear effects, a survey on the fiber nonlinearity compensation (NLC) techniques is provided. We focus on the well-known NLC techniques and discuss their performance, as well as their implementation and complexity. An extension of the inter-subcarrier nonlinear interference canceler approach is also proposed. A performance evaluation of the well-known NLC techniques and the proposed approach is provided in the context of Nyquist and super-Nyquist superchannel systems.Comment: Accepted in the IEEE Communications Surveys and Tutorial

    Adaptive OFDM Index Modulation for Two-Hop Relay-Assisted Networks

    Full text link
    In this paper, we propose an adaptive orthogonal frequency-division multiplexing (OFDM) index modulation (IM) scheme for two-hop relay networks. In contrast to the traditional OFDM IM scheme with a deterministic and fixed mapping scheme, in this proposed adaptive OFDM IM scheme, the mapping schemes between a bit stream and indices of active subcarriers for the first and second hops are adaptively selected by a certain criterion. As a result, the active subcarriers for the same bit stream in the first and second hops can be varied in order to combat slow frequency-selective fading. In this way, the system reliability can be enhanced. Additionally, considering the fact that a relay device is normally a simple node, which may not always be able to perform mapping scheme selection due to limited processing capability, we also propose an alternative adaptive methodology in which the mapping scheme selection is only performed at the source and the relay will simply utilize the selected mapping scheme without changing it. The analyses of average outage probability, network capacity and symbol error rate (SER) are given in closed form for decode-and-forward (DF) relaying networks and are substantiated by numerical results generated by Monte Carlo simulations.Comment: 30 page

    Power minimization for OFDM Transmission with Subcarrier-pair based Opportunistic DF Relaying

    Full text link
    This paper develops a sum-power minimized resource allocation (RA) algorithm subject to a sum-rate constraint for cooperative orthogonal frequency division modulation (OFDM) transmission with subcarrier-pair based opportunistic decode-and-forward (DF) relaying. The improved DF protocol first proposed in [1] is used with optimized subcarrier pairing. Instrumental to the RA algorithm design is appropriate definition of variables to represent source/relay power allocation, subcarrier pairing and transmission-mode selection elegantly, so that after continuous relaxation, the dual method and the Hungarian algorithm can be used to find an (at least approximately) optimum RA with polynomial complexity. Moreover, the bisection method is used to speed up the search of the optimum Lagrange multiplier for the dual method. Numerical results are shown to illustrate the power-reduction benefit of the improved DF protocol with optimized subcarrier pairing.Comment: 4 pages, accepted by IEEE Communications Letter

    Sum Rate Maximized Resource Allocation in Multiple DF Relays Aided OFDM Transmission

    Full text link
    In relay-aided wireless transmission systems, one of the key issues is how to decide assisting relays and manage the energy resource at the source and each individual relay, to maximize a certain objective related to system performance. This paper addresses the sum rate maximized resource allocation (RA) problem in a point to point orthogonal frequency division modulation (OFDM) transmission system assisted by multiple decode-and-forward (DF) relays, subject to the individual sum power constraints of the source and the relays. In particular, the transmission at each subcarrier can be in either the direct mode without any relay assisting, or the relay-aided mode with one or several relays assisting. We propose two RA algorithms which optimize the assignment of transmission mode and source power for every subcarrier, as well as the assisting relays and the power allocation to them for every {relay-aided} subcarrier. First, it is shown that the considered RA problem has zero Lagrangian duality gap when there is a big number of subcarriers. In this case, a duality based algorithm that finds a globally optimum RA is developed. Second, a coordinate-ascent based iterative algorithm, which finds a suboptimum RA but is always applicable regardless of the duality gap of the RA problem, is developed. The effectiveness of these algorithms has been illustrated by numerical experiments.Comment: 13 pages in two-column format, 10 figures, to appear in IEEE Journal on Selected Areas in Communication

    Location-aided multi-user beamforming for 60 GHz WPAN systems

    Get PDF
    • …
    corecore