3,127 research outputs found

    Cooperative Interference Control for Spectrum Sharing in OFDMA Cellular Systems

    Full text link
    This paper studies cooperative schemes for the inter-cell interference control in orthogonal-frequency-divisionmultiple- access (OFDMA) cellular systems. The downlink transmission in a simplified two-cell system is examined, where both cells simultaneously access the same frequency band using OFDMA. The joint power and subcarrier allocation over the two cells is investigated for maximizing their sum throughput with both centralized and decentralized implementations. Particularly, the decentralized allocation is achieved via a new cooperative interference control approach, whereby the two cells independently implement resource allocation to maximize individual throughput in an iterative manner, subject to a set of mutual interference power constraints. Simulation results show that the proposed decentralized resource allocation schemes achieve the system throughput close to that by the centralized scheme, and provide substantial throughput gains over existing schemes.Comment: To appear in ICC201

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Full text link
    In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation, and gradient-search methods. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated in this case such that the macro-cell optimal RE and corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Interference-Aware Downlink Resource Management for OFDMA Femtocell Networks

    Get PDF
    Femtocell is an economical solution to provide high speed indoor communication instead of the conventional macro-cellular networks. Especially, OFDMA femtocell is considered in the next generation cellular network such as 3GPP LTE and mobile WiMAX system. Although the femtocell has great advantages to accommodate indoor users, interference management problem is a critical issue to operate femtocell network. Existing OFDMA resource management algorithms only consider optimizing system-centric metric, and cannot manage the co-channel interference. Moreover, it is hard to cooperate with other femtocells to control the interference, since the self-configurable characteristics of femtocell. This paper proposes a novel interference-aware resource allocation algorithm for OFDMA femtocell networks. The proposed algorithm allocates resources according to a new objective function which reflects the effect of interference, and the heuristic algorithm is also introduced to reduce the complexity of the original problem. The Monte-Carlo simulation is performed to evaluate the performance of the proposed algorithm compared to the existing solutions

    Subcarrier and Power Allocation for LDS-OFDM System

    Get PDF
    Low Density Signature-Orthogonal Frequency Division Multiplexing (LDS-OFDM) has been introduced recently as an efficient multiple access technique. In this paper, we focus on the subcarrier and power allocation scheme for uplink LDS-OFDM system. Since the resource allocation problem is not convex due to the discrete nature of subcarrier allocation, the complexity of finding the optimal solutions is extremely high. We propose a heuristic subcarrier and power allocation algorithm to maximize the weighted sum-rate. The simulation results show that the proposed algorithm can significantly increase the spectral efficiency of the system. Furthermore, it is shown that LDS-OFDM system can achieve an outage probability much less than that for OFDMA system

    Cross-layer design for OFDMA wireless systems with heterogeneous delay requirements

    Get PDF
    This paper proposes a cross-layer scheduling scheme for OFDMA wireless systems with heterogeneous delay requirements. We shall focus on the cross-layer design which takes into account both queueing theory and information theory in modeling the system dynamics. We propose a delay-sensitive cross-layer design, which determines the optimal subcarrier allocation and power allocation policies to maximize the total system throughput, subject to the individual user's delay constraint and total base station transmit power constraint. The delay-sensitive power allocation was found to be multilevel water-filling in which urgent users have higher water-filling levels. The delay-sensitive subcarrier allocation strategy has linear complexity with respect to number of users and number of subcarriers. Simulation results show that substantial throughput gain is obtained while satisfying the delay constraints when the delay-sensitive jointly optimal power and subcarrier allocation policy is adopted. © 2007 IEEE.published_or_final_versio

    Power and Channel Allocation for Non-orthogonal Multiple Access in 5G Systems: Tractability and Computation

    Full text link
    Network capacity calls for significant increase for 5G cellular systems. A promising multi-user access scheme, non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC), is currently under consideration. In NOMA, spectrum efficiency is improved by allowing more than one user to simultaneously access the same frequency-time resource and separating multi-user signals by SIC at the receiver. These render resource allocation and optimization in NOMA different from orthogonal multiple access in 4G. In this paper, we provide theoretical insights and algorithmic solutions to jointly optimize power and channel allocation in NOMA. For utility maximization, we mathematically formulate NOMA resource allocation problems. We characterize and analyze the problems' tractability under a range of constraints and utility functions. For tractable cases, we provide polynomial-time solutions for global optimality. For intractable cases, we prove the NP-hardness and propose an algorithmic framework combining Lagrangian duality and dynamic programming (LDDP) to deliver near-optimal solutions. To gauge the performance of the obtained solutions, we also provide optimality bounds on the global optimum. Numerical results demonstrate that the proposed algorithmic solution can significantly improve the system performance in both throughput and fairness over orthogonal multiple access as well as over a previous NOMA resource allocation scheme.Comment: IEEE Transactions on Wireless Communications, revisio
    corecore