122 research outputs found

    Single-Channel Speech Dereverberation using Subband Network with A Reverberation Time Shortening Target

    Full text link
    This work proposes a subband network for single-channel speech dereverberation, and also a new learning target based on reverberation time shortening (RTS). In the time-frequency domain, we propose to use a subband network to perform dereverberation for different frequency bands independently. The time-domain convolution can be well decomposed to subband convolutions, thence it is reasonable to train the subband network to perform subband deconvolution. The learning target for dereverberation is usually set as the direct-path speech or optionally with some early reflections. This type of target suddenly truncates the reverberation, and thus it may not be suitable for network training, and leads to a large prediction error. In this work, we propose a RTS learning target to suppress reverberation and meanwhile maintain the exponential decaying property of reverberation, which will ease the network training, and thus reduce the prediction error and signal distortions. Experiments show that the subband network can achieve outstanding dereverberation performance, and the proposed target has a smaller prediction error than the target of direct-path speech and early reflections.Comment: Submitted to INTERSPEECH 202

    Spatial features of reverberant speech: estimation and application to recognition and diarization

    Get PDF
    Distant talking scenarios, such as hands-free calling or teleconference meetings, are essential for natural and comfortable human-machine interaction and they are being increasingly used in multiple contexts. The acquired speech signal in such scenarios is reverberant and affected by additive noise. This signal distortion degrades the performance of speech recognition and diarization systems creating troublesome human-machine interactions.This thesis proposes a method to non-intrusively estimate room acoustic parameters, paying special attention to a room acoustic parameter highly correlated with speech recognition degradation: clarity index. In addition, a method to provide information regarding the estimation accuracy is proposed. An analysis of the phoneme recognition performance for multiple reverberant environments is presented, from which a confusability metric for each phoneme is derived. This confusability metric is then employed to improve reverberant speech recognition performance. Additionally, room acoustic parameters can as well be used in speech recognition to provide robustness against reverberation. A method to exploit clarity index estimates in order to perform reverberant speech recognition is introduced. Finally, room acoustic parameters can also be used to diarize reverberant speech. A room acoustic parameter is proposed to be used as an additional source of information for single-channel diarization purposes in reverberant environments. In multi-channel environments, the time delay of arrival is a feature commonly used to diarize the input speech, however the computation of this feature is affected by reverberation. A method is presented to model the time delay of arrival in a robust manner so that speaker diarization is more accurately performed.Open Acces

    Estimation of room acoustic parameters: the ACE challenge

    No full text
    Reverberation Time (T60) and Direct-to-Reverberant Ratio (DRR) are important parameters which together can characterize sound captured by microphones in non-anechoic rooms. These parameters are important in speech processing applications such as speech recognition and dereverberation. The values of T60 and DRR can be estimated directly from the Acoustic Impulse Response (AIR) of the room. In practice, the AIR is not normally available, in which case these parameters must be estimated blindly from the observed speech in the microphone signal. The Acoustic Characterization of Environments (ACE) Challenge aimed to determine the state-of-the-art in blind acoustic parameter estimation and also to stimulate research in this area. A summary of the ACE Challenge, and the corpus used in the challenge is presented together with an analysis of the results. Existing algorithms were submitted alongside novel contributions, the comparative results for which are presented in this paper. The challenge showed that T60 estimation is a mature field where analytical approaches dominate whilst DRR estimation is a less mature field where machine learning approaches are currently more successful

    Statistics of natural reverberation enable perceptual separation of sound and space

    Get PDF
    In everyday listening, sound reaches our ears directly from a source as well as indirectly via reflections known as reverberation. Reverberation profoundly distorts the sound from a source, yet humans can both identify sound sources and distinguish environments from the resulting sound, via mechanisms that remain unclear. The core computational challenge is that the acoustic signatures of the source and environment are combined in a single signal received by the ear. Here we ask whether our recognition of sound sources and spaces reflects an ability to separate their effects and whether any such separation is enabled by statistical regularities of real-world reverberation. To first determine whether such statistical regularities exist, we measured impulse responses (IRs) of 271 spaces sampled from the distribution encountered by humans during daily life. The sampled spaces were diverse, but their IRs were tightly constrained, exhibiting exponential decay at frequency-dependent rates: Mid frequencies reverberated longest whereas higher and lower frequencies decayed more rapidly, presumably due to absorptive properties of materials and air. To test whether humans leverage these regularities, we manipulated IR decay characteristics in simulated reverberant audio. Listeners could discriminate sound sources and environments from these signals, but their abilities degraded when reverberation characteristics deviated from those of real-world environments. Subjectively, atypical IRs were mistaken for sound sources. The results suggest the brain separates sound into contributions from the source and the environment, constrained by a prior on natural reverberation. This separation process may contribute to robust recognition while providing information about spaces around us

    A combined evaluation of established and new approaches for speech recognition in varied reverberation conditions

    Get PDF
    International audienceRobustness to reverberation is a key concern for distant-microphone ASR. Various approaches have been proposed, including single-channel or multichannel dereverberation, robust feature extraction, alternative acoustic models, and acoustic model adaptation. However, to the best of our knowledge, a detailed study of these techniques in varied reverberation conditions is still missing in the literature. In this paper, we conduct a series of experiments to assess the impact of various dereverberation and acoustic model adaptation approaches on the ASR performance in the range of reverberation conditions found in real domestic environments. We consider both established approaches such as WPE and newer approaches such as learning hidden unit contribution (LHUC) adaptations, whose performance has not been reported before in this context, and we employ them in combination. Our results indicate that performing weighted prediction error (WPE) dereverberation on a reverberated test speech utterance and decoding using an deep neural network (DNN) acoustic model trained with multi-condition reverberated speech with feature-space maximum likelihood linear regression (fMLLR) transformed features, outperforms more recent approaches and helps significantly reduce the word error rate (WER)
    corecore