6 research outputs found

    Partitioning of the Degradation Space for OCR Training

    Get PDF
    Generally speaking optical character recognition algorithms tend to perform better when presented with homogeneous data. This paper studies a method that is designed to increase the homogeneity of training data, based on an understanding of the types of degradations that occur during the printing and scanning process, and how these degradations affect the homogeneity of the data. While it has been shown that dividing the degradation space by edge spread improves recognition accuracy over dividing the degradation space by threshold or point spread function width alone, the challenge is in deciding how many partitions and at what value of edge spread the divisions should be made. Clustering of different types of character features, fonts, sizes, resolutions and noise levels shows that edge spread is indeed shown to be a strong indicator of the homogeneity of character data clusters

    Multi-Character Field Recognition for Arabic and Chinese Handwriting

    Get PDF
    Two methods, Symbolic Indirect Correlation (SIC) and Style Constrained Classification (SCC), are proposed for recognizing handwritten Arabic and Chinese words and phrases. SIC reassembles variable-length segments of an unknown query that match similar segments of labeled reference words. Recognition is based on the correspondence between the order of the feature vectors and of the lexical transcript in both the query and the references. SIC implicitly incorporates language context in the form of letter n-grams. SCC is based on the notion that the style (distortion or noise) of a character is a good predictor of the distortions arising in other characters, even of a different class, from the same source. It is adaptive in the sense that with a long-enough field, its accuracy converges to that of a style-specific classifier trained on the writer of the unknown query. Neither SIC nor SCC requires the query words to appear among the references

    Multi-Character Field Recognition for Arabic and Chinese Handwriting

    Get PDF
    Two methods, Symbolic Indirect Correlation (SIC) and Style Constrained Classification (SCC), are proposed for recognizing handwritten Arabic and Chinese words and phrases. SIC reassembles variable-length segments of an unknown query that match similar segments of labeled reference words. Recognition is based on the correspondence between the order of the feature vectors and of the lexical transcript in both the query and the references. SIC implicitly incorporates language context in the form of letter n-grams. SCC is based on the notion that the style (distortion or noise) of a character is a good predictor of the distortions arising in other characters, even of a different class, from the same source. It is adaptive in the sense that with a long-enough field, its accuracy converges to that of a style-specific classifier trained on the writer of the unknown query. Neither SIC nor SCC requires the query words to appear among the references

    Style context with second-order statistics

    No full text
    Abstract—Patterns often occur as homogeneous groups or fields generated by the same source. In multisource recognition problems, such isogeny induces statistical dependencies between patterns (termed style context). We model these dependencies by secondorder statistics and formulate the optimal classifier for normally distributed styles. We show that model parameters estimated only from pairs of classes suffice to train classifiers for any test field length. Although computationally expensive, the style-conscious classifier reduces the field error rate by up to 20 percent on quadruples of handwritten digits from standard NIST data sets. Index Terms—Interpattern feature dependence, writer consistency, continuous styles, quadratic discriminant classifier.
    corecore