15 research outputs found

    Modeling correlation noise statistics at decoder for multi-view distributed video coding

    Full text link
    Recently, multi-view distributed video coding (MDVC) receives more and more attention, as its low-complexity encoder and high-complexity decoder coding paradigm suits for many applications such as sensor networks, in which several view sequences are required to be coded by a few power-constraint encoders. Modeling the correlation noises between original frame and side information frame is a hot research issue in distributed video coding (DVC), since it is a vital factor affecting the coding efficiency. This paper firstly proposes a novel method to model the correlation noises in MDVC. And an algorithm to online estimate the model at decoder using the knowledge of adjacent views is also presented. Experiment results show that the proposed correlation model can significantly improve coding efficiency. ?2009 IEEE.EI

    Improved rate-adaptive codes for distributed video coding

    Get PDF
    The research work is partially funded by the STEPS Malta.This scholarship is partly financed by the European Union - European Social Fund (ESF 1.25).Distributed Video Coding (DVC) is a coding paradigm which shifts the major computational intensive tasks from the encoder to the decoder. Temporal correlation is exploited at the decoder by predicting the Wyner-Ziv (WZ) frames from the adjacent key frames. Compression is then achieved by transmitting just the parity information required to correct the predicted frame and recover the original frame. This paper proposes an algorithm which identifies most of the unreliable bits in the predicted bit planes, by considering the discrepancies in the previously decoded bit plane. The design of the used Low Density Parity Check (LDPC) codes is then biased to provide better protection to the unreliable bits. Simulation results show that, for the same target quality, the proposed scheme can reduce the WZ bit rates by up to 7% compared to traditional schemes.peer-reviewe

    Improved rate-adaptive codes for Distributed Video Coding

    Full text link

    The DISCOVER codec: Architecture, Techniques and Evaluation

    Get PDF
    Distributed Video Coding is becoming more and more popular among the research community, because of its interesting theoretical contributions and because there are still many open problems waiting to be solved. This paper introduces the codec architecture and the associated tools adopted by DISCOVER (DIStributed COding for Video sERvices), a European project which has been devoted to the advancement of Distributed Video Coding for two years. Along with the general description and pointers to references with more detailed information, this paper also presents some of the results obtained with the DISCOVER codec. An extended performance analysis and the codec’s executable file are both publicly available on the project’s web site www.discoverdvc.org

    Studying Temporal Correlation Noise Modeling for Pixel Based Wyner-Ziv Video Coding

    No full text

    Improving the Rate-Distortion Performance in Distributed Video Coding

    Get PDF
    Distributed video coding is a coding paradigm, which allows encoding of video frames at a complexity that is substantially lower than that in conventional video coding schemes. This feature makes it suitable for some emerging applications such as wireless surveillance video and mobile camera phones. In distributed video coding, a subset of frames in the video sequence, known as the key frames, are encoded using a conventional intra-frame encoder, such as H264/AVC in the intra mode, and then transmitted to the decoder. The remaining frames, known as the Wyner-Ziv frames, are encoded based on the Wyner-Ziv principle by using the channel codes, such as LDPC codes. In the transform-domain distributed video coding, each Wyner-Ziv frame undergoes a 4x4 block DCT transform and the resulting DCT coefficients are grouped into DCT bands. The bitplaines corresponding to each DCT band are encoded by a channel encoder, for example an LDPCA encoder, one after another. The resulting error-correcting bits are retained in a buffer at the encoder and transmitted incrementally as needed by the decoder. At the decoder, the key frames are first decoded. The decoded key frames are then used to generate a side information frame as an initial estimate of the corresponding Wyner-Ziv frame, usually by employing an interpolation method. The difference between the DCT band in the side information frame and the corresponding one in the Wyner-Ziv frame, referred to as the correlation noise, is often modeled by Laplacian distribution. A soft-input information for each bit in the bitplane is obtained using this correlation noise model and the corresponding DCT band of the side information frame. The channel decoder then uses this soft-input information along with some error-correcting bits sent by the encoder to decode the bitplanes of each DCT band in each of the Wyner-Ziv frames. Hence, an accurate estimation of the correlation noise model parameter(s) and generation of high-quality side information are required for reliable soft-input information for the bitplanes in the decoder, which in turn leads to a more efficient decoding. Consequently, less error-correcting bits need to be transmitted from the encoder to the decoder to decode the bitplanes, leading to a better compression efficiency and rate-distortion performance. The correlation noise is not stationary and its statistics vary within each Wyner-Ziv frame and within its corresponding DCT bands. Hence, it is difficult to find an accurate model for the correlation noise and estimate its parameters precisely at the decoder. Moreover, in existing schemes the parameters of the correlation noise for each DCT band are estimated before the decoder starts to decode the bitplanes of that DCT band and they are not modified and kept unchanged during decoding process of the bitplanes. Another problem of concern is that, since side information frame is generated in the decoder using the temporal interpolation between the previously decoded frames, the quality of the side information frames is generally poor when the motions between the frames are non-linear. Hence, generating a high-quality side information is a challenging problem. This thesis is concerned with the study of accurate estimation of correlation noise model parameters and increasing in the quality of the side information from the standpoint of improving the rate-distortion performance in distributed video coding. A new scheme is proposed for the estimation of the correlation noise parameters wherein the decoder decodes simultaneously all the bitplanes of a DCT band in a Wyner-Ziv frame and then refines the parameters of the correlation noise model of the band in an iterative manner. This process is carried out on an augmented factor graph using a new recursive message passing algorithm, with the side information generated and kept unchanged during the decoding of the Wyner-Ziv frame. Extensive simulations are carried out showing that the proposed decoder leads to an improved rate-distortion performance in comparison to the original DISCOVER codec and in another DVC codec employing side information frame refinement, particularly for video sequences with high motion content. In the second part of this work, a new algorithm for the generation of the side information is proposed to refine the initial side information frame using the additional information obtained after decoding the previous DCT bands of a Wyner-Ziv frame. The simulations are carried out demonstrating that the proposed algorithm provides a performance superior to that of schemes employing the other side information refinement mechanisms. Finally, it is shown that incorporating the proposed algorithm for refining the side information into the decoder proposed in the first part of the thesis leads to a further improvement in the rate-distortion performance of the DVC codec

    Side information exploitation, quality control and low complexity implementation for distributed video coding

    Get PDF
    Distributed video coding (DVC) is a new video coding methodology that shifts the highly complex motion search components from the encoder to the decoder, such a video coder would have a great advantage in encoding speed and it is still able to achieve similar rate-distortion performance as the conventional coding solutions. Applications include wireless video sensor networks, mobile video cameras and wireless video surveillance, etc. Although many progresses have been made in DVC over the past ten years, there is still a gap in RD performance between conventional video coding solutions and DVC. The latest development of DVC is still far from standardization and practical use. The key problems remain in the areas such as accurate and efficient side information generation and refinement, quality control between Wyner-Ziv frames and key frames, correlation noise modelling and decoder complexity, etc. Under this context, this thesis proposes solutions to improve the state-of-the-art side information refinement schemes, enable consistent quality control over decoded frames during coding process and implement highly efficient DVC codec. This thesis investigates the impact of reference frames on side information generation and reveals that reference frames have the potential to be better side information than the extensively used interpolated frames. Based on this investigation, we also propose a motion range prediction (MRP) method to exploit reference frames and precisely guide the statistical motion learning process. Extensive simulation results show that choosing reference frames as SI performs competitively, and sometimes even better than interpolated frames. Furthermore, the proposed MRP method is shown to significantly reduce the decoding complexity without degrading any RD performance. To minimize the block artifacts and achieve consistent improvement in both subjective and objective quality of side information, we propose a novel side information synthesis framework working on pixel granularity. We synthesize the SI at pixel level to minimize the block artifacts and adaptively change the correlation noise model according to the new SI. Furthermore, we have fully implemented a state-of-the-art DVC decoder with the proposed framework using serial and parallel processing technologies to identify bottlenecks and areas to further reduce the decoding complexity, which is another major challenge for future practical DVC system deployments. The performance is evaluated based on the latest transform domain DVC codec and compared with different standard codecs. Extensive experimental results show substantial and consistent rate-distortion gains over standard video codecs and significant speedup over serial implementation. In order to bring the state-of-the-art DVC one step closer to practical use, we address the problem of distortion variation introduced by typical rate control algorithms, especially in a variable bit rate environment. Simulation results show that the proposed quality control algorithm is capable to meet user defined target distortion and maintain a rather small variation for sequence with slow motion and performs similar to fixed quantization for fast motion sequence at the cost of some RD performance. Finally, we propose the first implementation of a distributed video encoder on a Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is efficiently implemented, using rate adaptive low-density-parity-check accumulative (LDPCA) codes, exploiting the hardware features and optimization techniques to improve the overall performance. Implementation results show that the WZ encoder is able to encode at 134M instruction cycles per QCIF frame on a TMS320DM6437 DSP running at 700MHz. This results in encoder speed 29 times faster than non-optimized encoder implementation. We also implemented a highly efficient DVC decoder using both serial and parallel technology based on a PC-HPC (high performance cluster) architecture, where the encoder is running in a general purpose PC and the decoder is running in a multicore HPC. The experimental results show that the parallelized decoder can achieve about 10 times speedup under various bit-rates and GOP sizes compared to the serial implementation and significant RD gains with regards to the state-of-the-art DISCOVER codec

    Advanced distributed video coding techniques

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore