182 research outputs found

    Design of Graphene-Based Metamaterial Absorber and Antenna

    Get PDF
    Graphene is a monolayer of carbon atoms arranged in a honeycomb structure which exhibits remarkable properties including high electron mobility, mechanical flexibility, and saturable absorption. In this chapter, the conductivity model of the graphene is first reviewed. Based on the conductivity model of graphene, the equivalent circuit model of graphene is discussed. By varying graphene’s chemical potential via external biasing voltage, graphene conductivity can be flexibly tuned in the terahertz and infrared frequencies. With the tunable characteristic, graphene-based metamaterial absorber and reflectarray have been designed. Good performance in these examples illustrates that graphene promises sufficient flexibility in the design of metamaterial devices

    An Overview of Metamaterial Absorbers and Their Applications on Antennas

    Get PDF

    Radiative Heat Transfer with Nanowire/Nanohole Metamaterials for Thermal Energy Harvesting Applications

    Get PDF
    abstract: Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire/nanohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire/nanohole metamaterials which can potentially provide additional enhancement on radiative transport. On the other hand, beyond classical far-field radiative heat transfer, near-field radiation which is known of exceeding the Planck’s blackbody limit has also become a hot topic in the field. This PhD dissertation aims to obtain a deep fundamental understanding of nanowire/nanohole based metamaterials in both far-field and near-field in terms of both electrical and magnetic responses. The underlying mechanisms that can be excited by nanowire/nanohole metamaterials such as electrical surface plasmon polariton, magnetic hyperbolic mode, magnetic polariton, etc., will be theoretically studied in both far-field and near-field. Furthermore, other than conventional effective medium theory which only considers the electrical response of metamaterials, the artificial magnetic response of metamaterials will also be studied through parameter retrieval of far-field optical and radiative properties for studying near-field radiative transport. Moreover, a custom-made AFM tip based metrology will be employed to experimentally study near-field radiative transfer between a plate and a sphere separated by nanometer vacuum gaps in vacuum. This transformative research will break new ground in nanoscale radiative heat transfer for various applications in energy systems, thermal management, and thermal imaging and sensing.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Gradient metasurfaces: a review of fundamentals and applications

    Full text link
    In the wake of intense research on metamaterials the two-dimensional analogue, known as metasurfaces, has attracted progressively increasing attention in recent years due to the ease of fabrication and smaller insertion losses, while enabling an unprecedented control over spatial distributions of transmitted and reflected optical fields. Metasurfaces represent optically thin planar arrays of resonant subwavelength elements that can be arranged in a strictly or quasi periodic fashion, or even in an aperiodic manner, depending on targeted optical wavefronts to be molded with their help. This paper reviews a broad subclass of metasurfaces, viz. gradient metasurfaces, which are devised to exhibit spatially varying optical responses resulting in spatially varying amplitudes, phases and polarizations of scattered fields. Starting with introducing the concept of gradient metasurfaces, we present classification of different metasurfaces from the viewpoint of their responses, differentiating electrical-dipole, geometric, reflective and Huygens' metasurfaces. The fundamental building blocks essential for the realization of metasurfaces are then discussed in order to elucidate the underlying physics of various physical realizations of both plasmonic and purely dielectric metasurfaces. We then overview the main applications of gradient metasurfaces, including waveplates, flat lenses, spiral phase plates, broadband absorbers, color printing, holograms, polarimeters and surface wave couplers. The review is terminated with a short section on recently developed nonlinear metasurfaces, followed by the outlook presenting our view on possible future developments and perspectives for future applications.Comment: Accepted for publication in Reports on Progress in Physic

    Design and realization for radar cross section reduction of patch antennas using shorted stubs metamaterial absorbers

    Get PDF
    This thesis is devoted to analyzing of the Radar Cross Section (RCS) of rectangular patch antenna using Metamaterial Absorber (MMA) and the analysis of its reducing techniques. The addressed theme has a great complexity and it covers various areas that include designing and optimization of target geometrical model of rectangular patch antenna structures and making it compatible with respect to metamaterial geometry. Analyses have been made to optimize and validate the structure performances that include numerical methods for electromagnetic field computation, MMA behavior, characterization, extraction of parameters, antenna radiation performance analyses, simulation, fabrication, testing, and optimization with back validating the designs. The MMA structure finds its applications in antenna designing for the reduction of Monostatic and Bistatic RCS in stealth platform for lower detectable objects. However, there is still more emphasis needed to devote for in-band frequency response for low RCS of the antenna. Therefore, making these assumptions, we have been proposing novel designs of single-band, dual-band, and triple-band MMA structures. These structures provide significant scattering characteristics and offering flexibility to the designer to control and tune the resonant frequency, based on the specific applications as compared to that of the other MMAs in the microwave regime of the Electromagnetic (EM) spectrum. To explore the research scope, a three dimensional Frequency Selective Surface (FSS) structure has been analyzed and its simulation responses with respect to parametric analyses have been made. The research investigation further extended to Electronic Band Gap (EBG) Structure and Defected Ground Structure (DGS). A hybrid structure of patch antenna is proposed and designed for an inset feed rectangular microstrip patch antenna operating at 2.45 GHz in the Industrial, Scientific, and Medical (ISM) band. This hybrid structure claims the size reduction, bandwidth, and gains enhancement. The main focus of this research work is limited to determine the potential and practical feasibility of MMA’s to enhance the stealth performance of rectangular patch antennas. For this purpose, Monostatic and Bistatic RCS simulation and measurements are carried out in an anechoic chamber and practical methods for Radar Cross Section reduction are discussed and analyzed

    The Effects of the Dielectric Substrate Thickness and the Loss Tangent on the Absorption Spectrum: A Comprehensive Study Considering the Resonance Type, the Ground Plane Coupling, and the Characterization Setup

    Get PDF
    In this study, the effects of dielectric substrate thickness and the dielectric loss tangent on the absorption spectrum are investigated parametrically in S-band. The study has been conducted on two different absorber topologies, one is closed ring resonator (CRR) and the other is composed of a split ring resonator (SRR), to observe the effects on both LC- and dipole-type resonances. The studies on the substrate thickness have been performed both numerically and experimentally, whereas the studies on the dielectric loss tangent have been performed numerically. The results agree with the literature such that the substrate thickness has significant effects on the resonant frequency and the absorption peak level which is explained by the impedance matching phenomenon. Besides, we show that the frequency shift behavior (i.e. redshift or blueshift) in response to substrate thickness change highly depends on the coupling between the resonator structure and the metallic ground plane. Moreover, the responses of absorption spectra to the changes of substrate thickness and dielectric loss are very similar whether it is due to an LC or a dipole-type resonances. We believe that the comprehensive and systematic parametric analyses in whole contributes to the literature especially considering the experimental studies in microwaves

    Active metamaterial devices at terahertz frequencies

    Full text link
    Electromagnetic metamaterials have emerged as a powerful tool to tailor the electromagnetic material properties and control wave propagation using artificial sub-wavelength structures. During the past fifteen years, metamaterials have been intensively studied over the electromagnetic spectrum (from microwave to visible), giving rise to extraordinary phenomena including negative refractive index, invisibility cloaking, sub-diffraction-limit focusing, perfect absorption, and numerous novel electromagnetic devices and optical components. The terahertz regime, between 0.3 THz and 10 THz, is of particular interest due to its appealing applications in imaging, chemical and biological sensing and security screening. Metamaterials foster the development of terahertz sources and detectors and expand the potential applications of the terahertz technology through the realization of dynamic and tunable devices. The objective of this thesis is to present different mechanisms to implement active terahertz metamaterial devices by incorporating advanced microelectromechanical system technology. First, an optical mechanism is employed to create tunable metamaterials and perfect absorbers on flexible substrates. A semiconductor transfer technique is developed to transfer split ring resonators on GaAs patches to ultrathin polyimide substrate. Utilizing photo-excited free carriers in the semiconductor patches, a dynamic modulation of the metamaterial is demonstrated. Additionally, this thesis investigates how sufficiently large terahertz electric fields drive free carriers resulting in nonlinear metamaterial perfect absorbers. Second, a mechanically tunable metamaterial based on dual-layer broadside coupled split ring resonators is studied with the help of comb drive actuators. One of the layers is fixed while the other is laterally moved by an electrostatic voltage to control the interlayer coupling factors. As demonstrated, the amplitude and phase of the transmission response can be dynamically modulated. Third, a microcantilever array is used to create a reconfigurable metamaterial, which is fabricated using surface micromachining techniques. The separation distance between suspended beams and underlying capacitive pads can be altered with an electrostatic force, thereby tuning the transmission spectrum. The tuning mechanisms demonstrated in this thesis can be employed to construct devices to facilitate the development and commercialization of new compact and mechanically robust metamaterial-based terahertz technologies.2017-11-05T00:00:00

    Active metamaterial devices at terahertz frequencies

    Full text link
    Electromagnetic metamaterials have emerged as a powerful tool to tailor the electromagnetic material properties and control wave propagation using artificial sub-wavelength structures. During the past fifteen years, metamaterials have been intensively studied over the electromagnetic spectrum (from microwave to visible), giving rise to extraordinary phenomena including negative refractive index, invisibility cloaking, sub-diffraction-limit focusing, perfect absorption, and numerous novel electromagnetic devices and optical components. The terahertz regime, between 0.3 THz and 10 THz, is of particular interest due to its appealing applications in imaging, chemical and biological sensing and security screening. Metamaterials foster the development of terahertz sources and detectors and expand the potential applications of the terahertz technology through the realization of dynamic and tunable devices. The objective of this thesis is to present different mechanisms to implement active terahertz metamaterial devices by incorporating advanced microelectromechanical system technology. First, an optical mechanism is employed to create tunable metamaterials and perfect absorbers on flexible substrates. A semiconductor transfer technique is developed to transfer split ring resonators on GaAs patches to ultrathin polyimide substrate. Utilizing photo-excited free carriers in the semiconductor patches, a dynamic modulation of the metamaterial is demonstrated. Additionally, this thesis investigates how sufficiently large terahertz electric fields drive free carriers resulting in nonlinear metamaterial perfect absorbers. Second, a mechanically tunable metamaterial based on dual-layer broadside coupled split ring resonators is studied with the help of comb drive actuators. One of the layers is fixed while the other is laterally moved by an electrostatic voltage to control the interlayer coupling factors. As demonstrated, the amplitude and phase of the transmission response can be dynamically modulated. Third, a microcantilever array is used to create a reconfigurable metamaterial, which is fabricated using surface micromachining techniques. The separation distance between suspended beams and underlying capacitive pads can be altered with an electrostatic force, thereby tuning the transmission spectrum. The tuning mechanisms demonstrated in this thesis can be employed to construct devices to facilitate the development and commercialization of new compact and mechanically robust metamaterial-based terahertz technologies.2017-11-05T00:00:00

    Engineering Metamaterials

    Get PDF
    A couple of decades have passed since the advent of electromagnetic metamaterials. Although the research on artificial microwave materials dates back to the middle of the 20th century, the most prominent development in the electromagnetics of artificial media has happened in the new millennium. In the last decade, the electromagnetics of one-, two-, and three-dimensional metamaterials acquired robust characterization and design tools. Novel fabrication techniques have been developed. Many exotic effects involving metamaterials and metasurfaces, which initially belonged in a scientist’s lab, are now well understood by practicing engineers. Therefore, it is the right time for the metamaterial concepts to become a designer’s tools of choice in the landscape of electronics, microwaves, and photonics. Answering such a demand, the book “Engineering Metamaterials” focuses on the theory and applications of electromagnetic metamaterials, metasurfaces, and metamaterial transmission lines as the building blocks of present-day and future electronic, photonic, and microwave devices

    Wide-angle metamaterial absorber with highly insensitive absorption for TE and TM modes.

    Full text link
    Being incident and polarization angle insensitive are crucial characteristics of metamaterial perfect absorbers due to the variety of incident signals. In the case of incident angles insensitivity, facing transverse electric (TE) and transverse magnetic (TM) waves affect the absorption ratio significantly. In this scientific report, a crescent shape resonator has been introduced that provides over 99% absorption ratio for all polarization angles, as well as 70% and 93% efficiencies for different incident angles up to [Formula: see text] for TE and TM polarized waves, respectively. Moreover, the insensitivity for TE and TM modes can be adjusted due to the semi-symmetric structure. By adjusting the structure parameters, the absorption ratio for TE and TM waves at [Formula: see text] has been increased to 83% and 97%, respectively. This structure has been designed to operate at 5 GHz spectrum to absorb undesired signals generated due to the growing adoption of Wi-Fi networks. Finally, the proposed absorber has been fabricated in a [Formula: see text] array structure on FR-4 substrate. Strong correlation between measurement and simulation results validates the design procedure
    • …
    corecore