178 research outputs found

    Augmented reality based educational tool on Live Solar System (LSS)

    Get PDF
    Augmented Reality (AR) has its own potential in the education field, because AR can provide a seamless interaction between real and virtual objects. Hence, it draws many researchers’ interest in recent years on applying AR in the education field.This paper intends to give an overview of AR and the workflow of AR application.Besides, this paper also highlights the methodology of developing Live Solar System (LSS) based on the iterative prototype software engineering life cycle model, and the LSS overview which can be divided into software and hardware components

    Design and Comparison of Immersive Interactive Learning and Instructional Techniques for 3D Virtual Laboratories

    Get PDF
    This work presents the design, development, and testing of 3D virtual laboratories for practice, specifically in undergraduate mechanical engineering laboratories. The 3D virtual laboratories, implemented under two virtual environments3DTV and Computer Automated Virtual Environment (CAVE)serve as pre-lab sessions performed before the actual physical laboratory experiment. The current study compares the influence of two instructional methods (conventional lecture-based and inquiry-based) under two virtual environments, and the results are compared with the pre-lab sessions using a traditional paper-based lab manual. Subsequently, the evaluation is done by conducting performance and quantitative assessments from students pre-and post-laboratory performances. The research results demonstrate that students in the virtual modules (3DTV and CAVE) performed significantly better in the actual physical experiment than the students in the control group in terms of the overall experiment familiarity and procedure and the conceptual knowledge associated with the experiment. 2015 by the Massachusetts Institute of Technology

    Rapid Prototyping for Virtual Environments

    Get PDF
    Development of Virtual Environment (VE) applications is challenging where application developers are required to have expertise in the target VE technologies along with the problem domain expertise. New VE technologies impose a significant learning curve to even the most experienced VE developer. The proposed solution relies on synthesis to automate the migration of a VE application to a new unfamiliar VE platform/technology. To solve the problem, the Common Scene Definition Framework (CSDF) is developed, that serves as a superset/model representation of the target virtual world. Input modules are developed to populate the framework with the capabilities of the virtual world imported from VRML 2.0 and X3D formats. The synthesis capability is built into the framework to synthesize the virtual world into a subset of VRML 2.0, VRML 1.0, X3D, Java3D, JavaFX, JavaME, and OpenGL technologies, which may reside on different platforms. Interfaces are designed to keep the framework extensible to different and new VE formats/technologies. The framework demonstrated the ability to quickly synthesize a working prototype of the input virtual environment in different VE formats

    Towards a multimodal interaction space: Categorisation and applications

    Get PDF
    Based on many experiences of developing interactive systems by the authors, a framework for the description and analysis of interaction has been developed. The dimensions of this multimodal interaction space have been identified as sensory modalities, modes and levels of interaction. To illustrate and validate this framework, development of multimodal interaction styles is carried out and interactions in the real world are studied, going from theory to practice and back again. The paper describes the framework and two recent projects, one in the field of interactive architecture and another in the field of multimodal HCI research. Both projects use multiple modalities for interaction, particularly movement based interaction styles. © Springer-Verlag London Limited 2007

    Using virtual reality and 3D industrial numerical models for immersive interactive checklists

    Get PDF
    At the different stages of the PLM, companies develop numerous checklist-based procedures involving prototype inspection and testing. Besides, techniques from CAD, 3D imaging, animation and virtual reality now form a mature set of tools for industrial applications. The work presented in this article develops a unique framework for immersive checklist-based project reviews that applies to all steps of the PLM. It combines immersive navigation in the checklist, virtual experiments when needed and multimedia update of the checklist. It provides a generic tool, independent of the considered checklist, relies on the integration of various VR tools and concepts, in a modular way, and uses an original gesture recognition. Feasibility experiments are presented, validating the benefits of the approach

    VR cooperative environments for the interpretation and reconstruction of the archaeological landscape

    Full text link
    [ES] The Internet 2.0 has diffused a new approach enhancing creativity, multimedia communication, information sharing, cooperation: millions of people in the world are expressing the will to interconnect, co-create digital contents and share experience in the cyberspace. The possibility to develop complex dynamics of interaction inside the virtual domain are determining new scenarios in the field of cultural transmission. In this paper two case studies will be presented: the “Integrated Technologies of robotics and virtual environment in archaeology” project (supported by the Italian Ministry of Research), and the “Virtual Rome” project, two virtual collaborative environments in the web for the interpretation, reconstruction and 3D exploration of archaeological contexts.Pietroni, E.; Pescarin, S. (2010). VR cooperative environments for the interpretation and reconstruction of the archaeological landscape. Virtual Archaeology Review. 1(2):25-29. https://doi.org/10.4995/var.2010.4680OJS252912ANNUNZIATO M., BONINI E., PIERUCCI P.,, PIETRONI E. (2008): "Cultural mirrors: an epistemological approach to artificial life for cultural heritage communication", in Proceedings DMACH 2008, Digital Media and its Applications in Cultural Heritage, 3-6 November, 2008, University of Petra, Amman, Jordan.FORTE M. e AA.VV (2008). "La Villa di Livia, un percorso di ricerca di archeologia virtuale", ed. Erma di Bretschneider, Roma.FORTE M, PESCARIN S., PIETRONI E. (2005): "The Appia Antica Project". In The reconstruction of Archaeological Landscapes through Digital Technologies, Forte M. Ed., BAR Int. Series.pp. 79-92GEROSA M. (2006): Second Life, Meltemi, RomeJONES Q. (2003): "Applying Cyber-Archaeology", in Proceedings of the eighth European Conference on Computer-Supported Cooperative Work, Helsinki, Finland, pp. 41-60. http://www.ecscw.org/2003/003Jones_ecscw03.pdfMATURANA H., VARELA F. (1980): "Autopoiesis and Cognition: The Realization of the Living", in: Boston Studies in the Philosophy of Science, ed. by Robert S. Cohen and Marx W. Wartofsky, vol. 42, Dordecht (Holland): D. Reidel Publishing Co. http://dx.doi.org/10.1007/978-94-009-8947-4PESCARIN S. ET ALII (2008): "Back to 2nd AD". In VAST 2008 Proceedings., Braga Portugal, 2008SCHROEDER R. (1997): "Networked Worlds: Social Aspects of Multi-User Virtual Reality Technology", in Sociological Research Online, vol. 2, no. 4. http://www.socresonline.org.uk/2/4/5.html http://dx.doi.org/10.5153/sro.291ZEKI S. (1999): "Inner Vision". Oxford Univ. Press

    An ontology-based approach towards coupling task and path planning for the simulation of manipulation tasks

    Get PDF
    This work deals with the simulation and the validation of complex manipulation tasks under strong geometric constraints in virtual environments. The targeted applications relate to the industry 4.0 framework; as up-to-date products are more and more integrated and the economic competition increases, industrial companies express the need to validate, from design stage on, not only the static CAD models of their products but also the tasks (e.g., assembly or maintenance) related to their Product Lifecycle Management (PLM). The scientific community looked at this issue from two points of view: - Task planning decomposes a manipulation task to be realized into a sequence of primitive actions (i.e., a task plan) - Path planning computes collision-free trajectories, notably for the manipulated objects. It traditionally uses purely geometric data, which leads to classical limitations (possible high computational processing times, low relevance of the proposed trajectory concerning the task to be performed, or failure); recent works have shown the interest of using higher abstraction level data. Joint task and path planning approaches found in the literature usually perform a classical task planning step, and then check out the feasibility of path planning requests associated with the primitive actions of this task plan. The link between task and path planning has to be improved, notably because of the lack of loopback between the path planning level and the task planning level: - The path planning information used to question the task plan is usually limited to the motion feasibility where richer information such as the relevance or the complexity of the proposed path would be needed; - path planning queries traditionally use purely geometric data and/or “blind” path planning methods (e.g., RRT), and no task-related information is used at the path planning level Our work focuses on using task level information at the path planning level. The path planning algorithm considered is RRT; we chose such a probabilistic algorithm because we consider path planning for the simulation and the validation of complex tasks under strong geometric constraints. We propose an ontology-based approach to use task level information to specify path planning queries for the primitive actions of a task plan. First, we propose an ontology to conceptualize the knowledge about the 3D environment in which the simulated task takes place. The environment where the simulated task takes place is considered as a closed part of 3D Cartesian space cluttered with mobile/fixed obstacles (considered as rigid bodies). It is represented by a digital model relying on a multilayer architecture involving semantic, topologic and geometric data. The originality of the proposed ontology lies in the fact that it conceptualizes heterogeneous knowledge about both the obstacles and the free space models. Second, we exploit this ontology to automatically generate a path planning query associated to each given primitive action of a task plan. Through a reasoning process involving the primitive actions instantiated in the ontology, we are able to infer the start and the goal configurations, as well as task-related geometric constraints. Finally, a multi-level path planner is called to generate the corresponding trajectory. The contributions of this work have been validated by full simulation of several manipulation tasks under strong geometric constraints. The results obtained demonstrate that using task-related information allows better control on the RRT path planning algorithm involved to check the motion feasibility for the primitive actions of a task plan, leading to lower computational time and more relevant trajectories for primitive actions

    Virtual reality for fixture design and assembly

    Get PDF
    Due to today's heavy, growing competition environment, manufacturing companies have to develop and employ new emerging technologies to increase productivity, reduce production costs, improve product quality, and shorten lead time. The domain of Virtual Reality (VR) has gained great attention during the past few years and is currently explored for practical uses in various industrial areas e.g. CAD, CAM, CAE, CIM, CAPP and computer simulation etc. Owing to the trend towards reducing lead time and human effort devoted to fixtureplanning, the computerization of fixture design is required. Consequently, computer aided fixture design (CAFD) has become an important role of computer aided design/manufacture (CAD/CAM integration. However, there is very little ongoing research specially focused on using the VR technology as a promising solution to enhance CAFD systems' capability and functionality. This thesis reviews the possibility of using interactive Virtual Reality (VR) technology to support the conventional fixture design and assembly process. The trend that the use of VR benefits to fulfil the optimization of fixture design and assembly in VE has been identified and investigated. The primary objectives were to develop an interactive VR system entitled Virtual Reality Fixture Design & Assembly System (VFDAS), which will allow fixture designers to complete the entire design process for modular fixtures within the Virtual Environment (VE) for instance: Fixture element selection, fixture layout design, assembly, analysis and so on. The main advantage of VFDAS is that the VR system has the capability of simulating the various physical behaviours for virtual fixture elements according to Newtonian physical laws, which will be taken into account throughout the fixture design and evaluation process. For example: gravity, friction, collision detection, mass, applied force, reaction force and elasticity. Almost the whole fixture design and assembly process is achieved as if in the real physics world, and this provides a promise for computer aided fixture design (CAFD) in the future. The VFDAS system was validated in terms of the collision detection, rendering speed, friction, mass, gravity, applied force, elasticity and toppling. These simulation results are presented and quantified by a series of simple examples to show what the system can achieve and what the limitations are. The research concluded VR is a useful technology and VFDAS has potential to support education and application for fixture design. There is scope for further development to add more useful functionality to the VFDAS system

    Virtual reality for fixture design and assembly

    Get PDF
    Due to today's heavy, growing competition environment, manufacturing companies have to develop and employ new emerging technologies to increase productivity, reduce production costs, improve product quality, and shorten lead time. The domain of Virtual Reality (VR) has gained great attention during the past few years and is currently explored for practical uses in various industrial areas e.g. CAD, CAM, CAE, CIM, CAPP and computer simulation etc. Owing to the trend towards reducing lead time and human effort devoted to fixtureplanning, the computerization of fixture design is required. Consequently, computer aided fixture design (CAFD) has become an important role of computer aided design/manufacture (CAD/CAM integration. However, there is very little ongoing research specially focused on using the VR technology as a promising solution to enhance CAFD systems' capability and functionality. This thesis reviews the possibility of using interactive Virtual Reality (VR) technology to support the conventional fixture design and assembly process. The trend that the use of VR benefits to fulfil the optimization of fixture design and assembly in VE has been identified and investigated. The primary objectives were to develop an interactive VR system entitled Virtual Reality Fixture Design & Assembly System (VFDAS), which will allow fixture designers to complete the entire design process for modular fixtures within the Virtual Environment (VE) for instance: Fixture element selection, fixture layout design, assembly, analysis and so on. The main advantage of VFDAS is that the VR system has the capability of simulating the various physical behaviours for virtual fixture elements according to Newtonian physical laws, which will be taken into account throughout the fixture design and evaluation process. For example: gravity, friction, collision detection, mass, applied force, reaction force and elasticity. Almost the whole fixture design and assembly process is achieved as if in the real physics world, and this provides a promise for computer aided fixture design (CAFD) in the future. The VFDAS system was validated in terms of the collision detection, rendering speed, friction, mass, gravity, applied force, elasticity and toppling. These simulation results are presented and quantified by a series of simple examples to show what the system can achieve and what the limitations are. The research concluded VR is a useful technology and VFDAS has potential to support education and application for fixture design. There is scope for further development to add more useful functionality to the VFDAS system
    • …
    corecore