660 research outputs found

    Factor analysis modelling for speaker verification with short utterances

    Get PDF
    This paper examines combining both relevance MAP and subspace speaker adaptation processes to train GMM speaker models for use in speaker verification systems with a particular focus on short utterance lengths. The subspace speaker adaptation method involves developing a speaker GMM mean supervector as the sum of a speaker-independent prior distribution and a speaker dependent offset constrained to lie within a low-rank subspace, and has been shown to provide improvements in accuracy over ordinary relevance MAP when the amount of training data is limited. It is shown through testing on NIST SRE data that combining the two processes provides speaker models which lead to modest improvements in verification accuracy for limited data situations, in addition to improving the performance of the speaker verification system when a larger amount of available training data is available

    Efficient Invariant Features for Sensor Variability Compensation in Speaker Recognition

    Get PDF
    In this paper, we investigate the use of invariant features for speaker recognition. Owing to their characteristics, these features are introduced to cope with the difficult and challenging problem of sensor variability and the source of performance degradation inherent in speaker recognition systems. Our experiments show: (1) the effectiveness of these features in match cases; (2) the benefit of combining these features with the mel frequency cepstral coefficients to exploit their discrimination power under uncontrolled conditions (mismatch cases). Consequently, the proposed invariant features result in a performance improvement as demonstrated by a reduction in the equal error rate and the minimum decision cost function compared to the GMM-UBM speaker recognition systems based on MFCC features

    Affective Music Information Retrieval

    Full text link
    Much of the appeal of music lies in its power to convey emotions/moods and to evoke them in listeners. In consequence, the past decade witnessed a growing interest in modeling emotions from musical signals in the music information retrieval (MIR) community. In this article, we present a novel generative approach to music emotion modeling, with a specific focus on the valence-arousal (VA) dimension model of emotion. The presented generative model, called \emph{acoustic emotion Gaussians} (AEG), better accounts for the subjectivity of emotion perception by the use of probability distributions. Specifically, it learns from the emotion annotations of multiple subjects a Gaussian mixture model in the VA space with prior constraints on the corresponding acoustic features of the training music pieces. Such a computational framework is technically sound, capable of learning in an online fashion, and thus applicable to a variety of applications, including user-independent (general) and user-dependent (personalized) emotion recognition and emotion-based music retrieval. We report evaluations of the aforementioned applications of AEG on a larger-scale emotion-annotated corpora, AMG1608, to demonstrate the effectiveness of AEG and to showcase how evaluations are conducted for research on emotion-based MIR. Directions of future work are also discussed.Comment: 40 pages, 18 figures, 5 tables, author versio

    Towards an Optimal Speaker Modeling in Speaker Verification Systems using Personalized Background Models

    Get PDF
    This paper presents a novel speaker modeling approachfor speaker recognition systems. The basic idea of this approach consists of deriving the target speaker model from a personalized background model, composed only of the UBM Gaussian components which are really present in the speech of the target speaker. The motivation behind the derivation of speakersā€™ models from personalized background models is to exploit the observeddifference insome acoustic-classes between speakers, in order to improve the performance of speaker recognition systems.The proposed approach was evaluatedfor speaker verification task using various amounts of training and testing speech data. The experimental results showed that the proposed approach is efficientin termsof both verification performance and computational cost during the testing phase of the system, compared to the traditional UBM based speaker recognition systems

    Audio Event Detection using Weakly Labeled Data

    Full text link
    Acoustic event detection is essential for content analysis and description of multimedia recordings. The majority of current literature on the topic learns the detectors through fully-supervised techniques employing strongly labeled data. However, the labels available for majority of multimedia data are generally weak and do not provide sufficient detail for such methods to be employed. In this paper we propose a framework for learning acoustic event detectors using only weakly labeled data. We first show that audio event detection using weak labels can be formulated as an Multiple Instance Learning problem. We then suggest two frameworks for solving multiple-instance learning, one based on support vector machines, and the other on neural networks. The proposed methods can help in removing the time consuming and expensive process of manually annotating data to facilitate fully supervised learning. Moreover, it can not only detect events in a recording but can also provide temporal locations of events in the recording. This helps in obtaining a complete description of the recording and is notable since temporal information was never known in the first place in weakly labeled data.Comment: ACM Multimedia 201
    • ā€¦
    corecore