1,072 research outputs found

    All functions are (locally) ss-harmonic (up to a small error) - and applications

    Full text link
    The classical and the fractional Laplacians exhibit a number of similarities, but also some rather striking, and sometimes surprising, structural differences. A quite important example of these differences is that any function (regardless of its shape) can be locally approximated by functions with locally vanishing fractional Laplacian, as it was recently proved by Serena Dipierro, Ovidiu Savin and myself. This informal note is an exposition of this result and of some of its consequences

    Doubly nonlocal reaction-diffusion equation and the emergence of species

    Full text link
    The paper is devoted to a reaction-diffusion equation with doubly nonlocal nonlinearity arising in various applications in population dynamics. One of the integral terms corresponds to the nonlocal consumption of resources while another one describes reproduction with different phenotypes. Linear stability analysis of the homogeneous in space stationary solution is carried out. Existence of travelling waves is proved in the case of narrow kernels of the integrals. Periodic travelling waves are observed in numerical simulations. Existence of stationary solutions in the form of pulses is shown, and transition from periodic waves to pulses is studied. In the applications to the speciation theory, the results of this work signify that new species can emerge only if they do not have common offsprings. Thus, it is shown how Darwin's definition of species as groups of morphologically similar individuals is related to Mayr's definition as groups of individuals that can breed only among themselves.Comment: 15 pages, 4 figure

    Image Restoration Using Joint Statistical Modeling in Space-Transform Domain

    Full text link
    This paper presents a novel strategy for high-fidelity image restoration by characterizing both local smoothness and nonlocal self-similarity of natural images in a unified statistical manner. The main contributions are three-folds. First, from the perspective of image statistics, a joint statistical modeling (JSM) in an adaptive hybrid space-transform domain is established, which offers a powerful mechanism of combining local smoothness and nonlocal self-similarity simultaneously to ensure a more reliable and robust estimation. Second, a new form of minimization functional for solving image inverse problem is formulated using JSM under regularization-based framework. Finally, in order to make JSM tractable and robust, a new Split-Bregman based algorithm is developed to efficiently solve the above severely underdetermined inverse problem associated with theoretical proof of convergence. Extensive experiments on image inpainting, image deblurring and mixed Gaussian plus salt-and-pepper noise removal applications verify the effectiveness of the proposed algorithm.Comment: 14 pages, 18 figures, 7 Tables, to be published in IEEE Transactions on Circuits System and Video Technology (TCSVT). High resolution pdf version and Code can be found at: http://idm.pku.edu.cn/staff/zhangjian/IRJSM

    Visco-potential free-surface flows and long wave modelling

    Get PDF
    In a recent study [DutykhDias2007] we presented a novel visco-potential free surface flows formulation. The governing equations contain local and nonlocal dissipative terms. From physical point of view, local dissipation terms come from molecular viscosity but in practical computations, rather eddy viscosity should be used. On the other hand, nonlocal dissipative term represents a correction due to the presence of a bottom boundary layer. Using the standard procedure of Boussinesq equations derivation, we come to nonlocal long wave equations. In this article we analyse dispersion relation properties of proposed models. The effect of nonlocal term on solitary and linear progressive waves attenuation is investigated. Finally, we present some computations with viscous Boussinesq equations solved by a Fourier type spectral method.Comment: 29 pages, 13 figures. Some figures were updated. Revised version for European Journal of Mechanics B/Fluids. Other author's papers can be downloaded from http://www.lama.univ-savoie.fr/~dutyk

    Density Functional Simulation of Spontaneous Formation of Vesicle in Block Copolymer Solutions

    Get PDF
    We carry out numerical simulations of vesicle formation based on the density functional theory for block copolymer solutions. It is shown by solving the time evolution equations for concentrations that a polymer vesicle is spontaneously formed from the homogeneous state. The vesicle formation mechanism obtained by our simulation agree with the results of other simulations based on the particle models as well as experiments. By changing parameters such as the volume fraction of polymers or the Flory-Huggins interaction parameter between the hydrophobic subchains and solvents, we can obtain the spherical micelles, cylindrical micelles or bilayer structures, too. We also show that the morphological transition dynamics of the micellar structures can be reproduced by controlling the Flory-Huggins interaction parameter.Comment: 29 pages, 11 figures, to appear in J. Chem. Phy

    Nonlinear operators on graphs via stacks

    Get PDF
    International audienceWe consider a framework for nonlinear operators on functions evaluated on graphs via stacks of level sets. We investigate a family of transformations on functions evaluated on graph which includes adaptive flat and non-flat erosions and dilations in the sense of mathematical morphology. Additionally, the connection to mean motion curvature on graphs is noted. Proposed operators are illustrated in the cases of functions on graphs, textured meshes and graphs of images
    corecore