379 research outputs found

    Digital image processing and isostatic studies of the regional gravity field of Great Britain and adjacent marine regions

    Get PDF
    This thesis presents the results of an investigation into the regional gravity field of Great Britain and the adjacent regions. A prerequisite for this study was the development of a computer database designed to store, manipulate and display the information contained within nearly 400,000 gravity and topography point observations for the region. Digital image processing techniques have been applied to the reduction and display of the Bouguer anomaly data. The observed Bouguer anomaly lineaments display a pattern of geological basement structures which correlates closely with those predicted by recent plate tectonic models of the Lower Palaeozoic Caledonian orogeny which assume the convergence of three distinct continental plates. The nature of the isostatic compensation of the topography in the vicinity of the United Kingdom has been investigated using cross spectral analysis of the gravity and topography. The observed cross spectral relationships are compared with those for a theoretical isostatic model which assumes the lithosphere behaves like a thin elastic plate loaded by both surface topography and internal density contrasts overlying an inviscid fluid substratum. For a uniform elastic thickness of the continental lithosphere the best fit between the observed and theoretical relationships is obtained for values of the elastic thickness of the lithosphere of 22.5-24.5 km. A better fit is obtained if the continental lithosphere is assumed to comprise a population of distinct tectonic provinces of equal area with the values of the elastic thickness of the lithosphere for the provinces distributed uniformly between 6-8 km and 86-90 km. Detailed investigations into the structure of the crust beneath the Tertiary igneous complexes of Mull and Skye, northwest Scotland, indicate a possible slight thickening of the crust which is considered to be an important consequence of the mechanism of the emplacement of the complexes

    A magnetic study of the west Iberia and conjugate rifted continental margins: constraints on rift-to-/drift processes

    Get PDF
    The analysis and modelling of magnetic anomalies at the conjugate rifted continental margins of the southern Iberia Abyssal Plain (TAP) and Newfoundland Basin have revealed that the sources of magnetic anomalies are distinctly different across both each margin and between the two margins. Analyses of synthetic anomalies and gridded sea surface magnetic anomaly charts west of Iberia and east of Newfoundland were accomplished by the methods of Euler deconvolution, forward and inverse modelling of the power spectrum, reduction-to-the-pole, and forward and inverse indirect methods. In addition, three near-bottom magnetometer profiles were analysed by the same methods in addition to the application of componental magnetometry. The results have revealed that oceanic crust, transitional basement and thinned continental crust are defined by magnetic sources with different characteristics. Over oceanic crust, magnetic sources are present as lava-flow-like bodies whose depths coincide with the top of acoustic basement seen on MCS profiles. Top-basement source depths are consistent with those determined in two other regions of oceanic crust. In the southern IAP, oceanic crust, ~4 km thick with magnetizations up to +1.5 A/m, generated by organized seafloor spreading was first accreted -126 Ma at the position of a N-S oriented segmented basement peridotite ridge. To the west, seafloor spreading anomalies can be modelled at spreading rates of 10 mm/yr or more. Immediately to the east, in a zone -10-20 km in width, I identify seafloor spreading anomahes which can only be modelled assuming variable spreading rates. In the OCT, sources of magnetic anomalies are present at the top of basement and up to -6 km beneath. I interpret the uppermost source as serpentinized peridotite, and the lowermost source as intruded gabbroic bodies which were impeded, whilst rising upwards, by the lower density serpentinized peridotites. Intrusion was accompanied by tectonism and a gradual change in conditions from rifting to seafloor spreading as the North Atlantic rift propagated northwards in Early Cretaceous times. Within thinned continental crust, sources are poorly lineated, and distributed in depth. Scaling relationships of susceptibility are consistent with the sources of magnetic anomalies within continental crust. OCT-type intrusions may be present in the mantle beneath continental crust. At the conjugate Newfoundland margin, seafloor spreading anomalies can be modelled at rates of 8 and 10 mm/yr suggesting an onset age consistent with that of the IAP. In the OCT there, I propose that magnetic anomalies are sourced in near top-basement serpentinized peridotites. An absence of magmatic material and the differences in basement character (with the IAP) suggest that conjugate margin evolution may have been asymmetric

    The evolution of lithospheric deformation and crustal structure from continental margins to oceanic spreading centers

    Get PDF
    Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Science; and the Woods Hole Oceanographic Institution), 2002.Includes bibliographical references (p. 221-243).This thesis investigates the evolution of lithospheric deformation and crustal structure from continental margins to mid-ocean ridges. The first part (Ch. 2) examines the style of segmentation along the U.S. East Coast Margin and investigates the relationship between incipient margin structure and segmentation at the modem Mid-Atlantic Ridge. The second part (Chs. 3-5) focuses on the mechanics of faulting in extending lithosphere. In Ch. 3, I show that the incorporation of a strain-rate softening rheology in continuum models results in localized zones of high strain rate that are not imposed a priori and develop in response to the rheology and boundary conditions. I then use this approach to quantify the effects of thermal state, crustal thickness, and crustal rheology on the predicted style of extension deformation. The mechanics of fault initiation and propagation along mid-ocean ridge segments is investigated in Ch. 4. Two modes of fault development are identified: Mode C faults that initiate near the center of a segment and Mode E faults that initiate at the segment ends. Numerical results from Ch. 5 predict that over time scales longer than a typical earthquake cycle transform faults behave as zones of significant weakness.(cont.) Furthermore, these models indicate that Mode E faults formed at the inside-corner of a ridge-transform intersection will experience preferential growth relative to faults formed at the conjugate outside-corner due to their proximity to the weak transform zone. Finally, the last part of this thesis (Ch. 6) presents a new method to quantify the relationship between the seismic velocity and composition of igneous rocks. A direct relationship is derived to relate Vp to major element composition and typical velocity-depth profiles are used to calculate compositional bounds for the lower continental, margin, and oceanic crust.by Mark Dietrich Behn.Ph.D

    Geophysical study of the Sarir Fault Southeast Sirte Basin, Libya

    Get PDF

    Inherited basement structures and their influence in foreland evolution: A case study in Central Patagonia, Argentina

    Get PDF
    Continental crust exhibits areas of recurrent deformation and reactivation of faults that can be persistent for hundreds of millions of years. Associated with weak lithospheric zones, the characterization of long-lived deformational zones and inherited structures are critical aspects in the construction of orogens and rift systems, playing a major role in magmatism and basin evolution. Central Patagonia, which is situated in the Andean foreland of southern South America, presents a complex and multi-episodic tectonic history related to intraplate deformation at a significant distance from the Andean trench. Its ∼NW-SE structural trend, which is anomalously oblique to the Andean orogen, has been proposed as an inherited crustal anisotropy that controlled Mesozoic basins and Cenozoic volcano-sedimentary foreland basins development. However, a systematic regional study focused on the basement structural anisotropy has not been undertaken so far. In this contribution, we use aeromagnetic and gravimetric datasets that are integrated with field geological and structural data to address this issue. We define a series of ∼NW-SE regional structures which governed the present-day basement-block architecture of the foreland and exerted an important control in the deposition of Mesozoic-Cenozoic sedimentary and volcanic sequences. The tectonic significance of these structures and their paleogeographic implications in the context of the Late Paleozoic Gondwanide magmatic arc are also discussed.Fil: Renda, Emiliano Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Alvarez, Dolores. Secretaría de Industria y Minería. Servicio Geológico Minero Argentino; ArgentinaFil: Prezzi, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Oriolo, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Vizan, Haroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentin

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    Brittle Petrofabrics in the Central Bavarian Forest (SE Germany)

    Get PDF

    Crosshole seismic processing of physical model and coal measures data

    Get PDF
    Crosshole seismic techniques can be used to gain a large amount of information about the properties of the rock mass between two or more boreholes. The bulk of this thesis is concerned with two crosshole seismic processing techniques and their application to real data. The first part of this thesis describes the application of traveltime and amplitude tomographic processing in the monitoring of a simulated EOR project. Two physical models were made, designed to simulate 'pre-flood' and 'post-flood' stages in an EOR project. The results of the tomography work indicate that it is beneficial to perform amplitude tomographic processing of cross-well data, as a complement to traveltime inversion, because of the different response of velocity and absorption to changes in liquid/gas saturations for real reservoir rocks. The velocity tomograms image the flood zone quite accurately. Amplitude tomography shows the flood zone as an area of higher absorption but does not image its boundaries as precisely, because multi-pathing and diffraction effects are not accounted for by the ray-based techniques used. Part two is concerned with the crosshole seismic reflection technique, using data acquired from a site in northern England. The processing of these data is complex and includes deconvolution, wavefield separation and migration to a depth section. The two surveys fail to pin-point accurately the position of a large fault; the disappointing results, compared to earlier work in Yorkshire, are attributed to poorer generation of compressional body waves in harder Coal Measures strata. The final part of this thesis describes the results from a pilot seismic reflection test over the Tertiary igneous centre on the Isle of Skye, Scotland. The results indicate that the base of a large granite body consists of interlayered granites and basic rocks between 2.1 and 2.4km below mean sea level

    A geological and geophysical study of the Tendaho Graben in the Afar Depression, Ethiopia: insights into transitional continental rifting

    Get PDF
    A detailed magnetic and gravity study across the Tendaho Graben (the Red Sea propagator within the Afar Depression, Ethiopia) revealed features that can best be interpreted as a continental rift undergoing oceanization. This NW-trending extensional structure is ~50 km wide and it is confined within well-developed NW-trending boarder faults that deform the 2 km thick and ~ 2 Ma basaltic flows of the Afar Stratoids. The age of the basaltic flows becomes progressively younger inward from the boarder faults until it reaches ~30,000 years close to the rift axis. The central part of the Tendaho Graben is characterized by a 10 km wide magnetic trough, the central part of which is dominated by a narrow zone (~3 km) of a relatively elevated magnetic anomaly that coincides with a linear region of hydrothermal activity. This magnetic geometry is similar in dimension and magnitude to that observed from magnetic stripes of typical mid-ocean ridges. Forward modeling of the magnetic data (combined with geochronological data) shows that the basaltic rocks within the magnetic trough were crystallized after 0.78 Ma under normal magnetic polarity. The width of the magnetic trough (10 km) and the age of basaltic rocks (\u3c0.78 Ma) indicate a spreading rate of ~ 0.64 cm/year. However, to achieve the ~50 km width of the Tendaho Graben which started opening ~2.0 Ma, a 1.64 cm/year spreading rate is needed between 1.6 and 0.78 Ma. This suggests that the spreading rate with Tendaho Graben is slowing down and extension within Afar is accommodated somewhere else. A new model is proposed for the evolution of the Tendaho Graben based on fieldwork, the newly acquired magnetic data and geochronology --Abstract, page iii
    • …
    corecore