7 research outputs found

    Охлаждение светодиодного модуля с помощью различных теплоотводов

    Get PDF
    Наведено результати експериментального порівняння теплових характеристик трьох тепловідводів: штампованого з алюмінієвого листа (базовий варіант), на основі мідно-водяної пульсаційної теплової труби та на основі мідного дротового радіатора, за допомогою яких відводилося тепло від світлодіодного модуля потужністю 10,55 Вт. Встановлено, що в умовах природної конвекції всі три тепловідводи забезпечують рівень температури світлодіодного модуля в місцях установки світлодіодів, що не перевищує 64°С. Використання мідного дротового радіатора дозволяє в порівнянні з базовим варіантом знизити температуру в центрі друкованої плати модуля на 3,9°С, а використання тепловідводу на основі пульсаційної теплової труби — на 7,1°С.Given article presents the results of an experimental comparison of three radiators which are: pressed radiator made of aluminum plate (basic variant), radiator made of copper wire, and copper/water pulsating heat pipe. The radiators are intended to take off heat from the LED module with the power capacity of 10,55 W. It is established that under natural convection all three radiators can keep temperature level of the circuit board module less then 64 °С that lies within the operating range. In comparison with basic variant the use of the copper wire radiator allows lowering of the temperature in the LED module center on 3.9 °С, and the same value for the pulsating heat pipe is 7.1°С.Приведены результаты экспериментального сравнения тепловых характеристик трех теплоотводов: штампованного из алюминиевого листа (базовый вариант), на основе медно-водяной пульсационной тепловой трубы и на основе медного проволочного радиатора, с помощью которых охлаждался светодиодный модуль мощностью 10,55 Вт. Установлено, что все исследованные теплоотводы обеспечивают температуру не выше 64°С в местах установки светодиодов в условиях естественной конвекции, при этом использование медного проволочного радиатора позволяет снизить температуру в центре печатной платы модуля на 3,9°С по сравнению с базовым вариантом, а использование теплоотвода на основе пульсационной тепловой трубы — на 7,1°С

    การศึกษาทดลองการจัดการความร้อนของหลอดแอลอีดีกำลังสูงโดยใช้อุปกรณ์ระบายความร้อนแบบน้ำร่วมกับแผ่นเทอร์โมอิเล็กทริค (EXPERIMENTAL STUDY ON THE THERMAL MANAGEMENT OF HIGH-POWER LED USING COOLING WATER WITH THERMOELECTRIC)

    Get PDF
    ความร้อนที่เกิดขึ้นเมื่อใช้งานหลอดแอลอีดีกำลังสูงมีผลต่ออายุการใช้งานและความสว่าง การจัดการความร้อนที่เกิดขึ้นจึงถือเป็นเรื่องสำคัญ ดังนั้นงานวิจัยนี้จึงนำเสนอการศึกษาและเปรียบเทียบความสามารถในการระบายความร้อนของหลอดแอลอีดีกำลังสูง ขนาด 60 วัตต์ โดยใช้อุปกรณ์ระบายความร้อนแบบน้ำร่วมกับแผ่นเทอร์โมอิเล็กทริค โดยให้อุณหภูมิน้ำขาเข้าเฉลี่ยคงที่ 20 องศาเซลเซียส ทดลองปรับอัตราการไหลของน้ำเป็น 1.96, 4.01, 5.78 และ 8.29 ลิตร/นาที และจ่ายกระแสไฟฟ้าให้แผ่นเทอร์โมอิเล็กทริคที่ 2 4 และ 6 แอมแปร์ ตามลำดับ จากผลการทดลองพบว่า เมื่ออัตราการไหลของน้ำเพิ่มขึ้น อุณหภูมิของหลอดแอลอีดีจะลดลง แต่เมื่อถึงจุดหนึ่งอุณหภูมิของหลอดแอลอีดีจะสูงขึ้น และเมื่อจ่ายกระแสไฟฟ้าให้แผ่นเทอร์โมอิเล็กทริคเพิ่มขึ้น อุณหภูมิของหลอดแอลอีดีจะลดลง แต่ถ้าจ่ายกระแสไฟฟ้าให้แผ่นเทอร์โมอิเล็กทริคน้อยเกินไปจะทำให้หลอดแอลอีดีมีอุณหภูมิสูงขึ้น จุดที่สามารถระบายความร้อนได้ดีที่สุด คือ เมื่อจ่ายกระแสไฟฟ้าให้แผ่นเทอร์โมอิเล็กทริค 6 แอมแปร์ และอัตราการไหลของน้ำ 5.78 ลิตร/นาที โดยหลอดแอลอีดีมีอุณหภูมิเฉลี่ย 4.3 องศาเซลเซียสคำสำคัญ: แอลอีดีกำลังสูง  การจัดการความร้อน  การระบายความร้อนแอลอีดีด้วยน้ำ  เทอร์โมอิเล็กทริคThe heat generated by high power LEDs has a significant impact on the life time and brightness, so the thermal management is important. This research presents and compares the cooling capacity of high power LEDs that power is 60 Watt using a water cooling device with thermoelectric cooler. The average inlet water temperature was 20oC, water flow rate were varied to 1.96, 4.01, 5.78 and 8.29 L/min and the current was supplied to the thermoelectric cooler were varied to 2, 4 and 6 A. From the experimental result shown that when the water flow rate increases, the temperature of LEDs decreases, but at one point, the temperature of LEDs will increase. When current was supplied to thermoelectric cooler increases, the temperature of LEDs is decreases, but when the supplied current is too low, the temperature of LEDs is higher. The optimal heat dissipation is when the supplied current is 6 A and water flow rate is 5.78 L/min, the average temperature of LEDs is 4.3oCKeywords: High Power LED, Thermal Management, Water Cooling LED, Thermoelectri

    Effet des chanfreins sur l'amélioration du refroidissement des composants électroniques (S23)

    Get PDF
    Dans cet article, on présente une étude numérique basée sur la méthode des volumes finis résolvant les équations moyennées de Navier-Stokes. La simulation concerne un cas de cube chauffé, exposé simultanémént à un courant transversal et un jet perpendiculaire. Les deux courants sont à température plus faible et ont pour objectif de refroidir le cube qui représente un composant electronique. Après une étude de validation du modèle mathématique et du modèle de turbulence, la simulation est conduite pour trois valeurs du nombre de Reynolds du jet impactant. Enfin, l'étude est complétée par une modification de la facette supérieure du cube dans le but d'améliorer l'efficacité du refroidissement. On cassant l'arrete vif du cube par un chanfrein, on constate que la structure de l'écoulement autour du cube se trouve sensiblement modifiée. L'étude porte sur la quantification de l'apport thermique lié à cette modification géométrique. Après test, il se trouve que le flux de chaleur global echangé à travers le cube se trouve augmenté d'environ 26% de sa valeur de base pour le cas Rej/ReH=1.5 et s=4mm

    Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip Light-Emitting Diodes

    Get PDF
    The objective of this study was to develop suitable cooling systems for high-power multichip LEDs. To this end, three different active cooling systems were investigated to control the heat generated by the powering of high-power multichip LEDs in two different configurations (30 and 2 × 15 W). The following cooling systems were used in the study: an integrated multi-fin heat sink design with a fan, a cooling system with a thermoelectric cooler (TEC), and a heat pipe cooling device. According to the results, all three systems were observed to be sufficient for cooling high-power LEDs. Furthermore, it was observed that the integrated multifin heat sink design with a fan was the most efficient cooling system for a 30 W high-power multichip LED. The cooling system with a TEC and 46 W input power was the most efficient cooling system for 2 × 15 W high-power multichip LEDs

    Development of effective thermal management strategies for LED luminaires

    Get PDF
    The efficacy, reliability and versatility of the light emitting diode (LED) can outcompete most established light source technologies. However, they are particularly sensitive to high temperatures, which compromises their efficacy and reliability, undermining some of the technology s key benefits. Consequently, effective thermal management is essential to exploit the technology to its full potential. Thermal management is a well-established subject but its application in the relatively new LED lighting industry, with its specific constraints, is currently poorly defined. The question this thesis aims to answer is how can LED thermal management be achieved most effectively? This thesis starts with a review of the current state of the art, relevant thermal management technologies and market trends. This establishes current and future thermal management constraints in a commercial context. Methods to test and evaluate the thermal management performance of a luminaire system follow. The defined test methods, simulation benchmarks and operational constraints provide the foundation to develop effective thermal management strategies. Finally this work explores how the findings can be implemented in the development and comparison of multiple thermal management designs. These are optimised to assess the potential performance enhancement available when applied to a typical commercial system. The outcomes of this research showed that thermal management of LEDs can be expected to remain a key requirement but there are hints it is becoming less critical. The impacts of some common operating environments were studied, but appeared to have no significant effect on the thermal behaviour of a typical system. There are some active thermal management devices that warrant further attention, but passive systems are inherently well suited to LED luminaires and are readily adopted so were selected as the focus of this research. Using the techniques discussed in this thesis the performance of a commercially available component was evaluated. By optimising its geometry, a 5 % decrease in absolute thermal resistance or a 20 % increase in average heat transfer coefficient and 10 % reduction in heatsink mass can potentially be achieved . While greater lifecycle energy consumption savings were offered by minimising heatsink thermal resistance the most effective design was considered to be one optimised for maximum average heat transfer coefficient. Some more radical concepts were also considered. While these demonstrate the feasibility of passively manipulating fluid flow they had a detrimental impact on performance. Further analysis would be needed to conclusively dismiss these concepts but this work indicates there is very little potential in pursuing them further

    Systems integration of concentrator photovoltaics and thermoelectrics for enhanced energy harvesting

    Get PDF
    Alongside other photovoltaic technologies, Concentrator photovoltaics (CPV) capitalise on the recent progress for high-efficiency III:V based multi-junction photovoltaic cells, combining them with low cost optics for increased power production. Thermoelectrics are semiconductor devices that can act as solid-state heat pumps (Peltier mode) or to generate electrical power from temperature differentials (Seebeck effect). In this work, new designs for the integration of a thermoelectric module within a CPV cell receiver were proposed and substantiated as a reliable and accurate temperature control platform. The thermoelectric was used for accurate and repeatable cooling, exhibiting high temporal-thermal sensitivity. Testing was done under varying irradiance and temperature conditions. A novel Closed Loop Integrated Cooler (CLIC) technique was tested, demonstrated and validated as a useful experimental metrology tool for measuring sub-degree cell temperature within hybrid devices using the material properties of the thermoelectric module. Proof-of-concept circuitry and a LabVIEW based deployment of the technique were designed built and characterised. The technique was able to detect thermal anomalies and fluctuations present when undertaking an I-V curve, something otherwise infeasible with a standard k or t-type thermocouple. A full CPV-TE hybrid module with primary and secondary optical elements (POE-SOE-CPV-TE) was built using a further optimised receiver design and tested on-sun for evaluation under outdoor operation conditions in southern Spain. A unique TE-based “self-soldering” process was investigated to improve manufacture repeatability, reproducibility and minimise thermal resistance. A manually-tracked gyroscopic test rig was designed, built and used to gain valuable outdoor baseline comparison data for a commercially available CPV module and a Heterojunction Intrinsic Thinlayer (HIT) flat plate panel with the POE-SOE-CPV-TE hybrid device. An energetic break-even between the power consumed by the TE and the power gain of the CPV cell from induced temperature change was experimentally measured. This work demonstrated the unique functionalities a thermoelectric device can improve CPV power generation. The potential of a TEM to improve CPV power generation through active cooling was highlighted and quantified
    corecore