63 research outputs found

    A review of selected topics in physics based modeling for tunnel field-effect transistors

    Get PDF
    The research field on tunnel-FETs (TFETs) has been rapidly developing in the last ten years, driven by the quest for a new electronic switch operating at a supply voltage well below 1 V and thus delivering substantial improvements in the energy efficiency of integrated circuits. This paper reviews several aspects related to physics based modeling in TFETs, and shows how the description of these transistors implies a remarkable innovation and poses new challenges compared to conventional MOSFETs. A hierarchy of numerical models exist for TFETs covering a wide range of predictive capabilities and computational complexities. We start by reviewing seminal contributions on direct and indirect band-to-band tunneling (BTBT) modeling in semiconductors, from which most TCAD models have been actually derived. Then we move to the features and limitations of TCAD models themselves and to the discussion of what we define non-self-consistent quantum models, where BTBT is computed with rigorous quantum-mechanical models starting from frozen potential profiles and closed-boundary Schr\uf6dinger equation problems. We will then address models that solve the open-boundary Schr\uf6dinger equation problem, based either on the non-equilibrium Green's function NEGF or on the quantum-transmitting-boundary formalism, and show how the computational burden of these models may vary in a wide range depending on the Hamiltonian employed in the calculations. A specific section is devoted to TFETs based on 2D crystals and van der Waals hetero-structures. The main goal of this paper is to provide the reader with an introduction to the most important physics based models for TFETs, and with a possible guidance to the wide and rapidly developing literature in this exciting research field

    Correlation between the golden ratio and nanowire transistor performance

    Get PDF
    An observation was made in this research regarding the fact that the signatures of isotropic charge distributions in silicon nanowire transistors (NWT) displayed identical characteristics to the golden ratio (Phi). In turn, a simulation was conducted regarding ultra-scaled n-type Si (NWT) with respect to the 5-nm complementary metal-oxide-semiconductor (CMOS) application. The results reveal that the amount of mobile charge in the channel and intrinsic speed of the device are determined by the device geometry and could also be correlated to the golden ratio (Phi). This paper highlights the issue that the optimization of NWT geometry could reduce the impact of the main sources of statistical variability on the Figure of Merit (FoM) of devices. In the context of industrial early successes in fabricating vertically stacked NWT, ensemble Monte Carlo (MC) simulations with quantum correction are used to accurately predict the drive current. This occurs alongside a consideration of the degree to which the carrier transport in the vertically stacked lateral NWTs are complex

    Impact of randomly distributed dopants on Ω-gate junctionless silicon nanowire transistors

    Get PDF
    This paper presents experimental and simulation analysis of an Ω-shaped silicon junctionless nanowire field-effect transistor (JL-NWT) with gate lengths of 150 nm and diameter of the Si channel of 8 nm. Our experimental measurements reveal that the ON-currents up to 1.15 mA/μm for 1.0 V and 2.52 mA/μm for the 1.8-V gate overdrive with an OFF-current set at 100 nA/μm. Also, the experiment data reveal more than eight orders of magnitude ON-current to OFF-current ratios and an excellent subthreshold slope of 66 mV/dec recorded at room temperature. The obtained experimental current-voltage characteristics are used as a reference point to calibrate the simulations models used in this paper. Our simulation data show good agreement with the experimental results. All simulations are based on drift-diffusion formalism with activated density gradient quantum corrections. Once the simulations methodology is established, the simulations are calibrated to the experimental data. After this, we have performed statistical numerical experiments of a set of 500 different JL-NWTs. Each device has a unique random distribution of the discrete dopants within the silicon body. From those statistical simulations, we extracted important figures of merit, such as OFF-current and ON-current, subthreshold slope, and voltage threshold. The performed statistical analysis, on samples of those 500 JL-NWTs, shows that the mean ID-VGs characteristic is in excellent agreement with the experimental measurements. Moreover, the mean ID-VGs characteristic reproduces better the subthreshold slope data obtained from the experiment in comparison to the continuous model simulation. Finally, performance predictions for the JL transistor with shorter gate lengths and thinner oxide regions are carried out. Among the simulated JL transistors, the configuration with 25-nm gate length and 2-nm oxide thickness shows the most promising characteristics offering scalable designs

    A review of selected topics in physics based modeling for tunnel field-effect transistors

    Get PDF
    The research field on tunnel-FETs (TFETs) has been rapidly developing in the last ten years, driven by the quest for a new electronic switch operating at a supply voltage well below 1 V and thus delivering substantial improvements in the energy efficiency of integrated circuits. This paper reviews several aspects related to physics based modeling in TFETs, and shows how the description of these transistors implies a remarkable innovation and poses new challenges compared to conventional MOSFETs. A hierarchy of numerical models exist for TFETs covering a wide range of predictive capabilities and computational complexities. We start by reviewing seminal contributions on direct and indirect band-to-band tunneling (BTBT) modeling in semiconductors, from which most TCAD models have been actually derived. Then we move to the features and limitations of TCAD models themselves and to the discussion of what we define non-self-consistent quantum models, where BTBT is computed with rigorous quantum-mechanical models starting from frozen potential profiles and closed-boundary Schr\uf6dinger equation problems. We will then address models that solve the open-boundary Schr\uf6dinger equation problem, based either on the non-equilibrium Green's function NEGF or on the quantum-transmitting-boundary formalism, and show how the computational burden of these models may vary in a wide range depending on the Hamiltonian employed in the calculations. A specific section is devoted to TFETs based on 2D crystals and van der Waals hetero-structures. The main goal of this paper is to provide the reader with an introduction to the most important physics based models for TFETs, and with a possible guidance to the wide and rapidly developing literature in this exciting research field

    A sectorial scheme of gate-all-around field effect transistor with improved electrical characteristics

    No full text
    Reliability and controllability for a new scheme of gate-all-around field effect transistor (GAA-FET) with a silicon channel utilizing a sectorial cross section is evaluated in terms of Ion/Ioff current ratio, transconductance, subthreshold slope, threshold voltage roll-off, and drain induced barrier lowering (DIBL). In addition, the scaling behavior of electronic figures of merit is comprehensively studied with the aid of physical simulations. The electrical characteristic of proposed structure is compared with a circular GAA-FET, which is previously calibrated with an IBM sample at the 22 nm channel length using 3D-TCAD simulations. Our simulation results show that sectorial cross section GAA-FET is a superior structure for controlling short channel effects (SCEs) and to obtain better performance compared to conventional circular cross section counterpart

    Modelling and simulation study of NMOS Si nanowire transistors

    Get PDF
    Nanowire transistors (NWTs) represent a potential alternative to Silicon FinFET technology in the 5nm CMOS technology generation and beyond. Their gate length can be scaled beyond the limitations of FinFET gate length scaling to maintain superior off-state leakage current and performance thanks to better electrostatic control through the semiconductor nanowire channels by gate-all-around (GAA) architecture. Furthermore, it is possible to stack nanowires to enhance the drive current per footprint. Based on these considerations, vertically-stacked lateral NWTs have been included in the latest edition of the International Technology Roadmap for Semiconductors (ITRS) to allow for further performance enhancement and gate pitch scaling, which are key criteria of merit for the new CMOS technology generation. However, electrostatic confinement and the transport behaviour in these devices are more complex, especially in or beyond the 5nm CMOS technology generation. At the heart of this thesis is the model-based research of aggressively-scaled NWTs suitable for implementation in or beyond the 5nm CMOS technology generation, including their physical and operational limitations and intrinsic parameter fluctuations. The Ensemble Monte Carlo approach with Poisson-Schrödinger (PS) quantum corrections was adopted for the purpose of predictive performance evaluation of NWTs. The ratio of the major to the minor ellipsoidal cross-section axis (cross-sectional aspect ratio - AR) has been identified as a significant contributing factor in device performance. Until now, semiconductor industry players have carried out experimental research on NWTs with two different cross-sections: circular cylinder (or elliptical) NWTs and nanosheet (or nanoslab) NWTs. Each version has its own benefits and drawbacks; however, the key difference between these two versions is the cross-sectional AR. Several critical design questions, including the optimal NWT cross-sectional aspect ratio, remain unanswered. To answer these questions, the AR of a GAA NWT has been investigated in detail in this research maintaining the cross-sectional area constant. Signatures of isotropic charge distributions within Si NWTs were observed, exhibiting the same attributes as the golden ratio (Phi), the significance of which is well-known in the fields of art and architecture. To address the gap in the existing literature, which largely explores NWT scaling using single-channel simulation, thorough simulations of multiple channels vertically-stacked NWTs have been carried out with different cross-sectional shapes and channel lengths. Contact resistance, non-equilibrium transport and quantum confinement effects have been taken into account during the simulations in order to realistically access performance and scalability. Finally, the individual and combined effects of key statistical variability (SV) sources on threshold voltage (VT), subthreshold slope (SS), ON-current (Ion) and drain-induced barrier lowering (DIBL) have been simulated and discussed. The results indicate that the variability of NWTs is impacted by device architecture and dimensions, with a significant reduction in SV found in NWTs with optimal aspect ratios. Furthermore, a reduction in the variability of the threshold voltage has been observed in vertically-stacked NWTs due to the cancelling-out of variability in double and triple lateral channel NWTs

    Multilevel 3-D Device Simulation Approach Applied to Deeply Scaled Nanowire Field Effect Transistors

    Get PDF
    Three silicon nanowire (SiNW) field effect transistors (FETs) with 15 -, 12.5 -and 10.6 -nm gate lengths are simulated using hierarchical multilevel quantum and semiclassical models verified against experimental ID – VG characteristics. The tight-binding (TB) formalism is employed to obtain the band structure in k -space of ellipsoidal NWs to extract electron effective masses. The masses are transferred into quantum-corrected 3-D finite element (FE) drift-diffusion (DD) and ensemble Monte Carlo (MC) simulations, which accurately capture the quantum-mechanical confinement of the ellipsoidal NW cross sections. We demonstrate that the accurate parameterization of the bandstructure and the quantum-mechanical confinement has a profound impact on the computed ID – VG characteristics of nanoscaled devices. Finally, we devise a step-by-step technology computer-aided design (TCAD) methodology of simple parameterization for efficient DD device simulations

    Numerical simulation of advanced CMOS and beyond CMOS devices

    Get PDF
    Co-supervisore: Marco PalaopenLo scaling dei dispositivi elettronici e l'introduzione di nuove opzioni tecnologiche per l'aumento delle prestazioni richiede un costante supporto dal punto di vista della simulazione numerica. Questa tesi si inquadra in tale ambito ed in particolare si prefigge lo scopo di sviluppare due tool software completi basati su tecniche avanzate al fine di predire le prestazioni di dipositivi nano-elettronici progettati per i futuri nodi tecnologiciDottorato di ricerca in Ingegneria industriale e dell'informazioneembargoed_20131103Conzatti, Francesc

    Simulation and Modeling of Novel Electronic Device Architectures with NESS (Nano-Electronic Simulation Software): A Modular Nano TCAD Simulation Framework

    Get PDF
    The modeling of nano-electronic devices is a cost-effective approach for optimizing the semiconductor device performance and for guiding the fabrication technology. In this paper, we present the capabilities of the new flexible multi-scale nano TCAD simulation software called NanoElectronic Simulation Software (NESS). NESS is designed to study the charge transport in contemporary and novel ultra-scaled semiconductor devices. In order to simulate the charge transport in such ultra-scaled devices with complex architectures and design, we have developed numerous simulation modules based on various simulation approaches. Currently, NESS contains a driftdiffusion, Kubo–Greenwood, and non-equilibrium Green’s function (NEGF) modules. All modules are numerical solvers which are implemented in the C++ programming language, and all of them are linked and solved self-consistently with the Poisson equation. Here, we have deployed some of those modules to showcase the capabilities of NESS to simulate advanced nano-scale semiconductor devices. The devices simulated in this paper are chosen to represent the current state-of-the-art and future technologies where quantum mechanical effects play an important role. Our examples include ultra-scaled nanowire transistors, tunnel transistors, resonant tunneling diodes, and negative capacitance transistors. Our results show that NESS is a robust, fast, and reliable simulation platform which can accurately predict and describe the underlying physics in novel ultra-scaled electronic devices.European Union Horizon 2020 - 688101 SUPERAID7EPSRC UKRI Innovation Fellowship - EP/S001131/1 (QSEE), No. EP/P009972/1 (QUANTDEVMOD)H2020-FETOPEN-2019 s- No.862539-Electromed-FET OPEN.No. EP/S000259/1(Variability PDK for design based research on FPGA/neuro computing
    • …
    corecore