4 research outputs found

    Random Logic Programs: Linear Model

    Full text link
    This paper proposes a model, the linear model, for randomly generating logic programs with low density of rules and investigates statistical properties of such random logic programs. It is mathematically shown that the average number of answer sets for a random program converges to a constant when the number of atoms approaches infinity. Several experimental results are also reported, which justify the suitability of the linear model. It is also experimentally shown that, under this model, the size distribution of answer sets for random programs tends to a normal distribution when the number of atoms is sufficiently large.Comment: 33 pages. To appear in: Theory and Practice of Logic Programmin

    Generating Random Logic Programs Using Constraint Programming

    Get PDF
    Testing algorithms across a wide range of problem instances is crucial to ensure the validity of any claim about one algorithm's superiority over another. However, when it comes to inference algorithms for probabilistic logic programs, experimental evaluations are limited to only a few programs. Existing methods to generate random logic programs are limited to propositional programs and often impose stringent syntactic restrictions. We present a novel approach to generating random logic programs and random probabilistic logic programs using constraint programming, introducing a new constraint to control the independence structure of the underlying probability distribution. We also provide a combinatorial argument for the correctness of the model, show how the model scales with parameter values, and use the model to compare probabilistic inference algorithms across a range of synthetic problems. Our model allows inference algorithm developers to evaluate and compare the algorithms across a wide range of instances, providing a detailed picture of their (comparative) strengths and weaknesses.Comment: This is an extended version of the paper published in CP 202

    ON SIMPLE BUT HARD RANDOM INSTANCES OF PROPOSITIONAL THEORIES AND LOGIC PROGRAMS

    Get PDF
    In the last decade, Answer Set Programming (ASP) and Satisfiability (SAT) have been used to solve combinatorial search problems and practical applications in which they arise. In each of these formalisms, a tool called a solver is used to solve problems. A solver takes as input a specification of the problem – a logic program in the case of ASP, and a CNF theory for SAT – and produces as output a solution to the problem. Designing fast solvers is important for the success of this general-purpose approach to solving search problems. Classes of instances that pose challenges to solvers can help in this task. In this dissertation we create challenging yet simple benchmarks for existing solvers in ASP and SAT.We do so by providing models of simple logic programs as well as models of simple CNF theories. We then randomly generate logic programs as well as CNF theories from these models. Our experimental results show that computing answer sets of random logic programs as well as models of random CNF theories with carefully chosen parameters is hard for existing solvers. We generate random logic programs with 2-literals, and our experiments show that it is hard for ASP solvers to obtain answer sets of purely negative and constraint-free programs, indicating the importance of these programs in the development of ASP solvers. An easy-hard-easy pattern emerges as we compute the average number of choice points generated by ASP solvers on randomly generated 2-literal programs with an increasing number of rules. We provide an explanation for the emergence of this pattern in these programs. We also theoretically study the probability of existence of an answer set for sparse and dense 2-literal programs. We consider simple classes of mixed Horn formulas with purely positive 2- literal clauses and purely negated Horn clauses. First we consider a class of mixed Horn formulas wherein each formula has m 2-literal clauses and k-literal negated Horn clauses. We show that formulas that are generated from the phase transition region of this class are hard for complete SAT solvers. The second class of Mixed Horn Formulas we consider are obtained from completion of a certain class of random logic programs. We show the appearance of an easy-hard-easy pattern as we generate formulas from this class with increasing numbers of clauses, and that the formulas generated in the hard region can be used as benchmarks for testing incomplete SAT solvers

    Generalising weighted model counting

    Get PDF
    Given a formula in propositional or (finite-domain) first-order logic and some non-negative weights, weighted model counting (WMC) is a function problem that asks to compute the sum of the weights of the models of the formula. Originally used as a flexible way of performing probabilistic inference on graphical models, WMC has found many applications across artificial intelligence (AI), machine learning, and other domains. Areas of AI that rely on WMC include explainable AI, neural-symbolic AI, probabilistic programming, and statistical relational AI. WMC also has applications in bioinformatics, data mining, natural language processing, prognostics, and robotics. In this work, we are interested in revisiting the foundations of WMC and considering generalisations of some of the key definitions in the interest of conceptual clarity and practical efficiency. We begin by developing a measure-theoretic perspective on WMC, which suggests a new and more general way of defining the weights of an instance. This new representation can be as succinct as standard WMC but can also expand as needed to represent less-structured probability distributions. We demonstrate the performance benefits of the new format by developing a novel WMC encoding for Bayesian networks. We then show how existing WMC encodings for Bayesian networks can be transformed into this more general format and what conditions ensure that the transformation is correct (i.e., preserves the answer). Combining the strengths of the more flexible representation with the tricks used in existing encodings yields further efficiency improvements in Bayesian network probabilistic inference. Next, we turn our attention to the first-order setting. Here, we argue that the capabilities of practical model counting algorithms are severely limited by their inability to perform arbitrary recursive computations. To enable arbitrary recursion, we relax the restrictions that typically accompany domain recursion and generalise circuits (used to express a solution to a model counting problem) to graphs that are allowed to have cycles. These improvements enable us to find efficient solutions to counting fundamental structures such as injections and bijections that were previously unsolvable by any available algorithm. The second strand of this work is concerned with synthetic data generation. Testing algorithms across a wide range of problem instances is crucial to ensure the validity of any claim about one algorithm’s superiority over another. However, benchmarks are often limited and fail to reveal differences among the algorithms. First, we show how random instances of probabilistic logic programs (that typically use WMC algorithms for inference) can be generated using constraint programming. We also introduce a new constraint to control the independence structure of the underlying probability distribution and provide a combinatorial argument for the correctness of the constraint model. This model allows us to, for the first time, experimentally investigate inference algorithms on more than just a handful of instances. Second, we introduce a random model for WMC instances with a parameter that influences primal treewidth—the parameter most commonly used to characterise the difficulty of an instance. We show that the easy-hard-easy pattern with respect to clause density is different for algorithms based on dynamic programming and algebraic decision diagrams than for all other solvers. We also demonstrate that all WMC algorithms scale exponentially with respect to primal treewidth, although at differing rates
    corecore