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Abstract
Given a formula in propositional or (finite-domain) first-order logic and some non-

negative weights, weighted model counting (WMC) is a function problem that asks

to compute the sum of the weights of the models of the formula. Originally used as

a flexible way of performing probabilistic inference on graphical models, WMC has

found many applications across artificial intelligence (AI), machine learning, and other

domains. Areas of AI that rely on WMC include explainable AI, neural-symbolic AI,

probabilistic programming, and statistical relational AI. WMC also has applications in

bioinformatics, data mining, natural language processing, prognostics, and robotics.

In this work, we are interested in revisiting the foundations of WMC and considering

generalisations of some of the key definitions in the interest of conceptual clarity and

practical efficiency. We begin by developing a measure-theoretic perspective on WMC,

which suggests a new and more general way of defining the weights of an instance.

This new representation can be as succinct as standard WMC but can also expand

as needed to represent less-structured probability distributions. We demonstrate the

performance benefits of the new format by developing a novel WMC encoding for

Bayesian networks. We then show how existing WMC encodings for Bayesian networks

can be transformed into this more general format and what conditions ensure that the

transformation is correct (i.e., preserves the answer). Combining the strengths of the

more flexible representation with the tricks used in existing encodings yields further

efficiency improvements in Bayesian network probabilistic inference.

Next, we turn our attention to the first-order setting. Here, we argue that the

capabilities of practical model counting algorithms are severely limited by their inability

to perform arbitrary recursive computations. To enable arbitrary recursion, we relax

the restrictions that typically accompany domain recursion and generalise circuits

(used to express a solution to a model counting problem) to graphs that are allowed

to have cycles. These improvements enable us to find efficient solutions to counting

fundamental structures such as injections and bijections that were previously unsolvable

by any available algorithm.

The second strand of this work is concerned with synthetic data generation. Testing

algorithms across a wide range of problem instances is crucial to ensure the validity of

any claim about one algorithm’s superiority over another. However, benchmarks are

often limited and fail to reveal differences among the algorithms. First, we show how

random instances of probabilistic logic programs (that typically use WMC algorithms

for inference) can be generated using constraint programming. We also introduce
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a new constraint to control the independence structure of the underlying probability

distribution and provide a combinatorial argument for the correctness of the constraint

model. This model allows us to, for the first time, experimentally investigate inference

algorithms on more than just a handful of instances. Second, we introduce a random

model for WMC instances with a parameter that influences primal treewidth—the

parameter most commonly used to characterise the difficulty of an instance. We show

that the easy-hard-easy pattern with respect to clause density is different for algorithms

based on dynamic programming and algebraic decision diagrams than for all other

solvers. We also demonstrate that all WMC algorithms scale exponentially with respect

to primal treewidth, although at differing rates.
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Lay Summary

Given a task to compute a number (e.g., some probability), not all approaches are

equally efficient. For example, multiplying two integers is likely faster than simulating

multiplication via repeated addition. Moreover, this computational task is given to us

in some format, and this format determines whether an efficient solution is easy to

find. Weighted model counting (WMC) is an approach to computing sums of products

efficiently by using logic to describe what needs to be computed. WMC is heavily used

in artificial intelligence, machine learning, robotics, and many other fields.

This thesis approaches WMC from two fronts. First, we focus on improving WMC

algorithms by generalising some of the key ideas and making them more flexible and

powerful. To this end, we revisit the foundations of WMC and develop new input

formats that connect logic with numbers (which need to be added and/or multiplied)

in a more flexible way. We also improve the ability of a WMC algorithm to solve

subproblems by recognizing them as variations of subproblems encountered before.

Second, we improve our understanding of the differences among WMC algorithms

by generating a variety of problem instances and testing the algorithms on them. For

instances written in a more complex format, we find that all WMC algorithms behave

extremely similarly, as the computational bottleneck seems to happen before WMC

even takes place. On the other hand, for instances written in a simpler format, we show

important differences in the performance characteristics of WMC algorithms depending

on several key parameters that are used to describe these instances.
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Chapter 1

Introduction

Probabilistic methods are central to artificial intelligence [Russell and Norvig, 2020],

data science [Provost and Fawcett, 2013], statistics, and machine learning [Bishop,

2007, Koller and Friedman, 2009]. A fundamental task when working with probabilities

is to compute the probability of an event from some description of a probability space,

i.e., probabilistic inference. Examples of probabilistic inference include computing the

partition function of a Markov network or a marginal (or conditional) probability from

a Bayesian network. This thesis is about a particular approach to probabilistic inference

(and other similar computational tasks) and its use in performing inference on structured

representations of probability distributions such as Bayesian networks and probabilistic

logic programs. More generally, we look at various ways of describing arithmetic

computations pertinent to probabilistic inference and how algorithms interpret those

descriptions, leading to solutions of varying complexity. We begin with an example that

showcases how one can compute a probability in various ways depending on how one

chooses to reason about it.

Example 1.1. Suppose we have a biased coin with probability 0≤ p≤ 1 of landing

heads. What is the probability that it lands heads at least once if we toss it three times?

More formally, we have three independent Bernoulli random variables X1, X2, and X3

such that Xi ∼ Bernoulli(p) for all i, and we want to compute

P := Pr(X1 = 1∪X2 = 1∪X3 = 1).

The conceptually simplest way of calculating the value of P is by adding seven

terms, each of which is a product of three factors, i.e., either p or 1− p. This way, we

get

P = ppp+ pp(1− p)+ · · ·+(1− p)(1− p)p. (1.1)

1



2 Chapter 1. Introduction

One can compute the probability of any event in such a way, although the number

of arithmetic operations in Equation (1.1) scales exponentially with the number of

variables.

It is more computationally efficient to reason as follows. If X1 = 1, then all combina-

tions of values of X2 and X3 are in the event whose probability we are trying to compute.

If X1 = 0, then we can similarly reason about the value of X3 being immaterial if X2 = 1.

This line of reasoning gives us the following way to calculate the probability of interest:

P = p×1×1+(1− p)(p×1+(1− p)p). (1.2)

Even more efficiently, one can recognize that the only sequence of coin toss results

not in the event X1 = 1∪X2 = 1∪X3 = 1 is X1 = 0, X2 = 0, and X3 = 0. Thus, the value

of P can be computed as

P = 1− (1− p)3. (1.3)

The first of these three approaches hints at the central problem of this thesis. Our goal

is to efficiently compute a sum-of-products expression such as the one in Equation (1.1).

Of course, the difficulty of this problem partially depends on how each problem instance

is formulated, i.e., the input format. The main input format that we concern ourselves

with is based on propositional logic—this variation of the problem is known as weighted

model counting (WMC) [Chavira and Darwiche, 2008]. Equation (1.2) is an example

of the kind of efficiency improvements that can be achieved by WMC.

Using logic to encode such computational problems may seem like a curious choice

for a reader familiar with probability theory but not logic-based algorithms. However,

propositional logic has long played an important role in efficiently solving decision,

optimisation, and counting problems [Biere et al., 2009]—WMC is just an extension

for function problems. Moreover, WMC has established itself as the state-of-the-art

approach to probabilistic inference across many representations such as probabilistic

programming languages [Riguzzi et al., 2017] and graphical models [Agrawal et al.,

2021].

WMC has been extended in many ways, e.g., to support first-order logic and continu-

ous variables. The former extension is known as (symmetric) weighted first-order model

counting (WFOMC) [Van den Broeck et al., 2011]. WFOMC algorithms capitalise on

mathematical operations besides multiplication and addition and thus can compute P

from Example 1.1 as in Equation (1.3). The latter extension is called weighted model

integration (WMI) [Belle et al., 2015]. In WMI, constraints on continuous variables

are described using a fragment of first-order logic known as linear arithmetic over the
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Problem(s) Sum/Integral (over) Product (over)

WMC, AMC literals

PBP
models of a propositional theory

arbitrary

WMI models of a propositional LRA theory literals

WFOMI models of a first-order LRA theory predicates

WFOMC predicates

SP
models of a first-order theory

arbitrary

SumProd instantiations of discrete variables functions

Algebraic path paths in a graph edges in a path

Permanent permutations elements of a matrix

Table 1.1: An assortment of problems that require one to compute a quantity defined as

a sum of products.

rationals (LRA), i.e., inequalities with addition. The two extensions combined into one

are known as (symmetric) weighted first-order model integration (WFOMI) [Feldstein

and Belle, 2021].

Instead of performing addition and multiplication on numbers, one can do so on

elements of an arbitrary (commutative) semiring. This extension of WMC is known as

algebraic model counting (AMC) [Kimmig et al., 2017]. AMC has also been extended

to support first-order logic—this is known as semiring programming [Belle and De

Raedt, 2020]. Another important generalisation offered by SP is flexibility in how

the numbers that are to be multiplied and added (i.e., the weights) can be defined. In

this thesis, we do something similar within the constraints of a modern (propositional)

WMC algorithm and call our generalisation pseudo-Boolean projection (PBP).

While WMC and its extensions use logic-based input formats, other sum-of-products

problems have been studied before. For instance, the SumProd problem, which general-

ises problems such as probabilistic inference in Bayesian networks and propositional

model counting, is defined in terms of discrete variables and functions [Bacchus et al.,

2009, Dechter, 1999]. In this case, the sum is over all possible instantiations of the

variables, and the product is over the values of the functions. Another similar problem

is the algebraic path problem where the sum is over all paths in a graph from one

node to another, and the product is over the weights of the edges in the path [Baras

and Theodorakopoulos, 2010]. This problem generalises many graph problems such

as shortest and longest path and has many uses in routing and network reliability ana-
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lysis. Lastly, even famous problems in algebraic complexity theory such as computing

the determinant or the permanent of a matrix are examples of this sum-of-products

computational paradigm [Bürgisser et al., 1997, Valiant, 1979]. See Table 1.1 for a

summary of all of the discussed problems and the work of Kimmig et al. [2017] for a

more in-depth discussion on some of them.

WMC is a rapidly growing area of research. Publications describing novel WMC

algorithms continue to appear each year [Dudek et al., 2020b, Korhonen and Järvisalo,

2021]. Furthermore, a competition1 (as well as a workshop) for model counting and its

extensions started running annually in 2020 [Fichte et al., 2021]. Given all of this, it is

all the more important to

• develop WMC algorithms with good empirical performance,

• understand the comparative strengths and weaknesses of different approaches,

• and optimise the encoding process that transforms problems from the applica-

tion (e.g., probabilistic inference) domain to a representation accepted by the

algorithm.

In this thesis, we contribute to all three of these objectives, particularly focusing on the

semantics of WMC and benchmarking WMC algorithms—two areas largely neglected

by previous work.

1.1 The Approach

Our main conceptual tool on this quest is generalisation. While the term generalisation

can be defined in many ways, we use it to mean that x is a generalisation of y if x

can do/express/capture everything that y can, and more. Many important results in

science and mathematics are generalisations, e.g., the Lebesgue integral generalises

the Riemann integral, and Einstein’s general theory of relativity generalises Newton’s

law of universal gravitation. An example of generalisation closer to home is the

emergence of solvers for, e.g., Boolean satisfiability (SAT), constraint programming,

integer programming, and linear programming, which can be used to solve many

decision and optimisation problems. While designing algorithms for specific problems

remains a valuable enterprise, there is indisputable value in having a range of tools with

broader applicability.

1https://mccompetition.org/

https://mccompetition.org/
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We establish the following generalisations. In Chapters 3 and 4, we generalise

the definition of WMC (to PBP) to take full advantage of the capabilities of recent

developments in WMC algorithms. In Chapter 5, we generalise some of the procedures

and data structures used by a WFOMC algorithm to make it applicable to a wider range

of problem instances. The main idea behind this work is that, in many cases, efficiency

improvements can be achieved by developing algorithms that can handle richer data

structures. Another important idea in this work, particularly in Chapters 6 and 7, is that

empirical testing of algorithms on a wide range of random instances can help reveal

fundamental differences in the behaviour of said algorithms. In Section 1.1.1, we review

the contributions and the structure of this thesis in more detail.

1.1.1 Contributions and Outline

Encoding a probabilistic inference problem as an instance of WMC typically necessitates

adding extra literals and clauses. This is partly so because the predominant definition of

WMC assigns weights to models based on weights on literals, and this severely restricts

what probability distributions can be represented. In Chapter 3, we develop a measure-

theoretic perspective on WMC and propose a way to encode conditional weights on

literals analogously to conditional probabilities. This representation can be as succinct

as standard WMC with weights on literals but can also expand as needed to represent

probability distributions with less structure. To demonstrate the performance benefits of

conditional weights over the addition of extra literals, we develop a new WMC encoding

for Bayesian networks and adapt a recent WMC algorithm ADDMC [Dudek et al.,

2020a] to the new format. Our experiments show that the new encoding significantly

improves the performance of the algorithm on most benchmark instances. Chapter 3 is

published as:

P. Dilkas and V. Belle. Weighted model counting with conditional weights
for Bayesian networks. In C. P. de Campos, M. H. Maathuis, and E. Quae-
ghebeur, editors, Proceedings of the Thirty-Seventh Conference on Un-
certainty in Artificial Intelligence, UAI 2021, Virtual Event, 27-30 July
2021, volume 161 of Proceedings of Machine Learning Research, pages
386–396. AUAI Press, 2021b. URL https://proceedings.mlr.press/
v161/dilkas21a.html

Chapter 4 builds on Chapter 3 and further considers WMC in its full generality,

leading to the definition of PBP. Here we present an algorithm that transforms WMC

instances into PBP instances while eliminating around 43 % of variables on average

https://proceedings.mlr.press/v161/dilkas21a.html
https://proceedings.mlr.press/v161/dilkas21a.html
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across various Bayesian network encodings. Moreover, we identify sufficient condi-

tions for such a variable removal to be possible. Our experiments show significant

improvement in WMC-based Bayesian network inference. Chapter 4 is published as:

P. Dilkas and V. Belle. Weighted model counting without parameter
variables. In C. Li and F. Manyà, editors, Theory and Applications of
Satisfiability Testing - SAT 2021 - 24th International Conference, Bar-
celona, Spain, July 5-9, 2021, Proceedings, volume 12831 of Lecture Notes
in Computer Science, pages 134–151. Springer, 2021a. doi: 10.1007/
978-3-030-80223-3 10

In Chapter 5, our attention shifts to another version of WMC, namely, WFOMC and

its unweighted variant FOMC. Despite being around for more than a decade, practical

(W)FOMC algorithms are still unable to compute functions as simple as a factorial. In

this chapter, we argue that the capabilities of FOMC algorithms are severely limited

by their inability to express arbitrary recursive computations. To enable arbitrary

recursion, we relax the restrictions that typically accompany domain recursion and

generalise circuits used to express a solution to an FOMC problem to graphs that

may contain cycles. To this end, we enhance the most well-established WFOMC

algorithm FORCLIFT [Van den Broeck et al., 2011] with new compilation rules and

an algorithm to check whether a recursive call is feasible. These improvements allow

us to automatically find efficient solutions to counting fundamental structures such as

injections and bijections.

In Chapters 6 and 7, we transition to the other strand of this work, i.e., random

instance generation. Testing algorithms across a wide range of problem instances is

crucial to ensure the validity of any claim about one algorithm’s superiority over another.

However, when it comes to inference algorithms for probabilistic logic programs,

experimental evaluations are limited to only a few programs. Existing methods to

generate random logic programs are limited to propositional programs and often impose

stringent syntactic restrictions. In Chapter 6, we present a novel approach to generating

random logic programs and random probabilistic logic programs using constraint

programming, introducing a new constraint to control the independence structure of

the underlying probability distribution. We also provide a combinatorial argument for

the correctness of the model, show how the model scales with parameter values, and

use the model to compare probabilistic inference algorithms across a range of synthetic

problems. Our model allows inference algorithm developers to evaluate and compare

the algorithms across a wide range of instances, providing a detailed picture of their

comparative strengths and weaknesses. Chapter 6 is published as:
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P. Dilkas and V. Belle. Generating random logic programs using constraint
programming. In H. Simonis, editor, Principles and Practice of Constraint
Programming - 26th International Conference, CP 2020, Louvain-la-Neuve,
Belgium, September 7-11, 2020, Proceedings, volume 12333 of Lecture
Notes in Computer Science, pages 828–845. Springer, 2020. doi: 10.1007/
978-3-030-58475-7 48

In recent experiments, WMC algorithms are shown to perform similarly overall but

with significant differences on specific subsets of benchmarks. A good understanding of

the differences in the performance of algorithms requires identifying key characteristics

that favour some algorithms over others. In Chapter 7, we introduce a random model for

WMC instances with a parameter that influences primal treewidth—the parameter most

commonly used to characterise the difficulty of an instance. We then use this model to

experimentally compare the performance of WMC algorithms C2D [Darwiche, 2004],

CACHET [Sang et al., 2004], D4 [Lagniez and Marquis, 2017], DPMC [Dudek et al.,

2020b], and MINIC2D [Oztok and Darwiche, 2015] on random instances. We show that

the easy-hard-easy pattern is different for algorithms based on dynamic programming

and algebraic decision diagrams (ADDs) than for all other solvers. We also show how

all WMC algorithms scale exponentially with respect to primal treewidth and how this

scalability varies across algorithms and densities. Finally, we demonstrate how the

performance of ADD-based algorithms changes depending on how much determinism

or redundancy there is in the numerical values of weights.

We end the introduction with a visual description of the topics covered in this thesis.

Figure 1.1 lists some of the key concepts of this work and shows how each chapter of

the thesis relates to these concepts and the interactions between them. Chapter 2 covers

a selection of topics related to this work and refers the reader to suitable literature

for further information. Chapter 3 examines the definition of WMC more closely and

suggests a way to bypass it, leading to a more succinct encoding of Bayesian network

probabilistic inference compatible with the ADDMC algorithm. Then Chapter 4

describes WMC encodings for Bayesian networks, defines PBP, shows how to transform

WMC instances to PBP instances, and how the DPMC algorithm benefits from this new

format. In Chapter 5, we expand the capabilities of the WFOMC algorithm FORCLIFT

to new (previously unsolvable) instances. Chapter 6 describes a constraint model that

can generate random (probabilistic) logic programs in the ProbLog [De Raedt et al.,

2007] language—a well-known use-case of WMC. Chapter 7 develops an algorithm for

generating random WMC instances and uses it to showcase some important differences

in the behaviour of WMC algorithms. Finally, Chapter 8 summarises our results and
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Constraint programming Random algorithms

Bayesian networks ProbLog Markov logic

PBP WMC WFOMC

DPMCADDMC Other

WMC

algorithms

FORCLIFT Other

WFOMC

algorithms

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Figure 1.1: Concepts relevant to the thesis. The first row contains two approaches to

generating random problem instances. The second row contains some representations of

probability distributions. The third row contains encodings, i.e., computational problems

that encode probabilistic inference tasks. The last row contains WMC and WFOMC

algorithms. Each chapter is assigned a colour that indicates which concepts and

interactions between concepts the chapter is about.

provides a perspective for potential future work.



Chapter 2

Background

This chapter provides a brief overview of the concepts and topics pertinent to the

rest of the thesis. We start in Section 2.1 with a description of propositional logic

and the kinds of computational problems that use a logic-based input format or are

closely tied to logic in some other way. Then, Section 2.2 introduces two declarative

programming paradigms that can be used to describe various computational problems:

logic programming and constraint programming. Next, Section 2.3 covers various ways

to represent probability distributions. We divide these representations into those based

on graphs (i.e., probabilistic graphical models) and those based on text (i.e., probabilistic

programming languages). Likewise, Section 2.4 covers various representations of

Boolean and pseudo-Boolean functions. These representations (and algorithms that

compile into them) are crucial in many WMC and probabilistic inference algorithms.

We end the chapter with Section 2.5, which provides an overview of the applications of

WMC and its impact on areas such as bioinformatics, natural language processing, and

robotics.

2.1 Propositional Logic

In this section, we briefly introduce the fundamentals of propositional logic and describe

some logic-based computational problems. We refer the reader to the book by Ben-Ari

[2012] for a more detailed introduction to logic and its role in computer science.

An atomic proposition (also known as an atom or a Boolean/logical/propositional

variable) is a variable with two possible (truth) values: true and false. We usually

refer to atoms as variables. A formula is any well-formed expression that connects

variables using the following Boolean/logical operators (and parentheses): negation

9
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(¬), disjunction (∨), conjunction (∧), (material) implication (⇒), and equivalence (i.e.,

material biconditional,⇔). The last two operators are often defined as a⇒ b≡ ¬a∨b

and a⇔ b≡ (a⇒ b)∧(b⇒ a). A literal is either a variable or its negation, respectively

called positive and negative literal. A clause is a disjunction of literals.1 A formula is

in conjunctive normal form (CNF) if it is a conjunction of clauses, and it is in k-CNF

if every clause has exactly k literals. Many other normal forms and ways to represent

propositional formulas are covered in Section 2.4.

An interpretation (also known as a variable assignment) of a formula φ is a map

from the variables of φ to the set {true,false}. A model is an interpretation under

which φ evaluates to true. A formula is

satisfiable if it has at least one model,

unsatisfiable (i.e., a contradiction) if it has no models, and a

tautology (i.e., valid) if all interpretations are models.

We denote tautologies and contradictions as ⊤ and ⊥, respectively, and often use them

interchangeably with the truth values true and false. Two formulas φ and ψ over the

same set of variables are equivalent (denoted φ≡ ψ) if they have equal sets of models.

Throughout the thesis, we use set-theoretic notation for many concepts in logic such

as clauses and formulas in CNF (e.g., we write c ∈ φ to mean that clause c is one of the

clauses of formula φ). However, this does not automatically mean that no duplicates are

allowed—whether or not that is the case is clarified on a case-by-case basis.

Example 2.1. Formula φ := (¬a∨ b)∧ a has two variables a and b, is in CNF, and

contains two clauses. The first clause ¬a∨b has a negative literal ¬a and a positive

literal b. Since φ has two variables, it also has four interpretations. Interpretation

{a 7→ true,b 7→ true} is a model, so φ is satisfiable. An equivalent set-theoretic

representation of φ is {{¬a,b},{a}}.

Primal treewidth is a parameter we use in Chapter 7 to quantify the structural

hardness of a formula. The primal treewidth of a CNF formula φ is the treewidth

of the primal graph of φ. The primal graph of a CNF formula is a graph that has a

node for every variable, and there is an edge between two variables if they coappear

in some clause. The treewidth of a graph G measures how similar G is to a tree and is

stated in Definition 2.1. Primal treewidth (and treewidth more generally) is a parameter

1The word clause is defined differently in Section 2.2.1 and Chapters 5 and 6.
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x1 x2

x3 x4

(a) the primal graph of φ

x1 x2

x4

x1 x3

x4

(b) a minimum-width tree decomposition of the primal graph

Figure 2.1: Two graphs associated with formula φ from Example 2.2

frequently used to describe the parameterised complexity of algorithms [Bliem et al.,

2017, Downey and Fellows, 2013, Fichte et al., 2020]. For a graph G, let V (G) denote

the set of nodes of G and E(G) denote the set of edges of G.

Definition 2.1 (Robertson and Seymour [1984]). A tree decomposition of a graph G is

a pair (T,χ), where T is a tree and χ : V (T )→ 2V (G) is a labelling function, with the

following properties:

•
⋃

t∈V (T )χ(t) = V (G);

• for every edge e ∈E(G), there is t ∈V (T ) such that e has both endpoints in χ(t);

• for all t, t ′, t ′′ ∈ V (T ), if t ′ is on the path between t and t ′′, then χ(t)∩χ(t ′′) ⊆
χ(t ′).

The width of tree decomposition (T,χ) is maxt∈V (T ) |χ(t)|−1. The treewidth of graph

G is the smallest w such that G has a tree decomposition of width w.

Example 2.2. Let φ be the formula (x4∨¬x3∨ x1)∧ (¬x2∨ x4)∧ (¬x1∨ x2∨ x4). The

primal graph of φ is pictured in Figure 2.1a; it is one edge away from being a complete

graph since only x2 and x3 do not appear in a clause together. Figure 2.1b shows a tree

decomposition of the primal graph of width 2. Since the graph in Figure 2.1a does not

have a tree decomposition of width 1, the treewidth of the primal graph is 2, and thus

the primal treewidth of φ is also 2.

2.1.1 Logic-Based Computational Problems

We begin with a description of SAT and some of its extensions. Given a propositional

formula2, SAT asks whether the formula is satisfiable. SAT (also known as proposition-

al/Boolean satisfiability) is the first problem shown to be NP-complete [Cook, 1971,

Levin, 1973]. Motivated by many real-life problems that were found to be reducible

2Unless stated otherwise, formulas for SAT and other similar problems are assumed to be in CNF.
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to SAT, research in SAT solving produced algorithms that can efficiently tackle large

instances despite the exponential worst-case time complexity [Biere et al., 2009].

Instead of satisfying all clauses, one can attempt to find an interpretation that satisfies

the maximum number of clauses—this problem is called MaxSAT [Bacchus et al., 2021,

Li and Manyà, 2009]. It is an NP-hard optimisation problem that (in its most general

form) attaches a (potentially infinite) cost for failing to satisfy each clause and seeks to

minimise total cost.

#SAT, or (propositional) model counting, asks to count the number of models of a

formula [Gomes et al., 2009]. #SAT is the canonical #P-complete problem with many

applications in areas such as planning and probabilistic reasoning. #∃SAT, or projected

model counting, selects a subset of variables called priority variables [Aziz et al., 2015].

The task is then to count the number of assignments of values to priority variables

that can be extended to models. The extension of #SAT most relevant to our work is

called weighted model counting (WMC). Given a propositional formula φ and a weight

function w from the literals of φ to non-negative real numbers, WMC asks to compute

WMC(φ) = ∑
ω|=φ

∏
ω|=l

w(l),

where the summation is over all models ω of φ, and the product is over all literals of ω

[Chavira and Darwiche, 2008]. Lastly, both #SAT and WMC have been extended to

first-order logic [Van den Broeck et al., 2011]—this is the topic of Chapter 5.

Example 2.3. The model count of the formula in Example 2.1 is equal to one. With a

weight function w := {a 7→ 0.7,¬a 7→ 0.2,b 7→ 0.8,¬b 7→ 0.7}, the WMC of the same

formula is 0.7×0.8 = 0.56.

Example 2.4. With the same weight function w as in Example 2.3, the WMC of formula

a∨b is w(a)w(b)+w(a)w(¬b)+w(¬a)w(b)= 0.7×0.8+0.7×0.7+0.2×0.8= 1.21,

and the model count of this formula is 3.

WMC has been extended in many ways to support, e.g., continuous variables [Belle

et al., 2015], infinite domains [Belle, 2017a], and function symbols [Belle, 2017b].

In particular, the extension to first-order logic, known as (symmetric) weighted first-

order model counting (WFOMC) [Gogate and Domingos, 2016, Van den Broeck et al.,

2011] is the focus of Chapter 5. There is also recent work providing support for both

continuous variables and first-order logic [Feldstein and Belle, 2021]. Finally, replacing

real numbers with addition and multiplication with an arbitrary commutative semiring
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allows WMC to subsume a variety of other problems such as most probable explanation,

shortest path, and gradient computation [Belle and De Raedt, 2020, Kimmig et al.,

2017].

There are a number of other computational problems that similarly use logical or

algebraic constructs to encode problems from various domains. First, a propositional

formula with prepended quantifiers for all of its variables is known as a quantified

Boolean formula [Kleine Büning and Bubeck, 2009]. One can then ask whether the

formula is true or false. Satisfiability module theories considers SAT in the context of

a background theory [Barrett et al., 2009]. These theories can describe the properties

of integer arithmetic, sets, trees, strings, and many commonly-used abstract data struc-

tures. Pseudo-Boolean solvers consider decision and optimisation problems that can

be expressed as linear inequalities over Boolean variables [Roussel and Manquinho,

2009]. Integer (linear) programming instances encode integer optimisation problems

under inequality constraints of a certain linear-algebraic form [Wolsey, 2020]. Finally,

constraint programming is a powerful paradigm for solving combinatorial search and

optimisation problems with a much more expressive syntax [Rossi et al., 2006]—we

discuss constraint programming in more detail in Section 2.2.2.

2.2 Declarative Programming

In contrast to imperative programming, in a declarative programming language, one

describes what is to be computed but not how. Here we describe two declarative

programming paradigms pertinent to our work: logic programming and constraint

programming.

2.2.1 Logic Programming

In this subsection, we give a brief introduction to logic programming. Specifically,

we focus on Prolog—the most popular logic programming language yet. We do not,

however, attempt to cover all (or even most) of the capabilities of Prolog but rather focus

on the main concepts and ideas relevant to our work in Chapter 6. Note that different

descriptions of logic programming often use different (and mutually inconsistent)

terminologies. Here we prioritise names and definitions that are sufficiently general

for our needs and reasonably consistent with the terminology used in logic. For more

details on logic programming and Prolog, we refer the reader to some of the numerous
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books on the subject [Bratko, 2012, Nilsson and Maluszynski, 1990].

A logic program is a finite sequence3 of clauses. A clause consists of a head and

a body. If a clause has an empty body, it is a fact; otherwise it is a rule. The Prolog

syntax for a fact and a rule is h. and h :- b., respectively, where h is the head and b

is the body, although we often write h← b instead.

The head of a clause is an atom. An atom (i.e., atomic formula) has the form

p(t1, . . . , tn), where p is a predicate (symbol), and (ti)
n
i=1 are terms. Here, n ∈ N0 is the

arity of P. When the arity is equal to zero, the atom is also known as a propositional

variable. Some built-in predicates such as equality can be written in infix notation

and without parentheses, i.e., as a = b instead of = (a,b). A term is either a (logical)

variable (i.e., a string that begins with a capital letter) or a constant (i.e., any other

string). If an atom contains only constants, it is a ground atom.

The body of a clause is a formula.4 A formula is any well-formed expression that

connects atoms using conjunction, disjunction, and negation (as well as parentheses).

Prolog syntax for these operators is different from the standard notation used in logic:

we write ‘,’ instead of ∧, ‘;’ instead of ∨, and ‘\+’ instead of ¬. Just like with the

syntax for clauses, in most cases we continue to use logic-based syntax for convenience.

Finally, a query is a formula to be evaluated. If the query has no variables, the

evaluation returns either true or false. Otherwise, the logic programming engine tries

to replace the variables of the query with constants such that the resulting formula is a

logical consequence of the program. If successful, an example of such a mapping is

returned; if not, the engine returns false.

Example 2.5. Consider the following logic program.

parent(sky, will).

parent(will, zoe).

ancestor(X, Z) :- parent(X, Z); (parent(X, Y), ancestor(Y, Z)).

In our alternative logic-based notation, the last clause could also be written as

ancestor(X, Z)← parent(X, Z)∨ (parent(X, Y)∧ancestor(Y, Z)).

This program has three clauses. The first two clauses are facts, whereas the last

clause is a rule. The program uses two predicates (parent and ancestor), three
3Although it is common to define logic programs as sets, the order is important for efficiency and can

be the difference between finite and infinite running time.
4In the literature, it is common to define clause bodies as conjunctions, but here we present a more

general definition, given that such a generalisation is widely supported by the relevant software.
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constants (sky, will, and zoe), and the last clauses uses three variables (X, Y, and Z).

Both predicates are of arity 2.

Clause-by-clause, this program can be interpreted as:

• Sky is a parent of Will.

• Will is a parent of Zoe.

• X is an ancestor of Z if X is a parent of Z or there is a Y such that X is a parent of Y,

and Y is an ancestor of Z.

The query ancestor(sky, zoe) returns true since Sky is a parent of a parent of

Zoe, and thus an ancestor. The query ancestor(X, sky) returns false because we

know nothing about the ancestors of Sky. Lastly, the query ancestor(sky, X) could

return either {X 7→ will} or {X 7→ zoe} as both Will and Zoe have Sky as an ancestor.

2.2.2 Constraint Programming

Constraint models are successfully used to tackle search problems in many domains

such as bioinformatics, configuration, networks, planning, scheduling, and vehicle

routing [Rossi et al., 2006]. Here we briefly describe what a constraint satisfaction

problem (CSP) is, how an algorithm might attempt to solve it, and how one can help the

algorithm search efficiently.

Definition 2.2. A CSP is a triple (X ,D,C), where

• X = (xi)
n
i=1 is an n-tuple of variables,

• D = (Di)
n
i=1 is an n-tuple of (typically, finite) domains such that xi ∈ Di,

• and C is a set of constraints.

A constraint is a pair (S,R), where S⊆X is the scope of the constraint, and R⊆∏xi∈S Di

is a relation specifying allowed combinations of values. Constraints can be specified

either intensionally (i.e., by describing a formula that must be satisfied) or extensionally

(i.e., by listing all tuples). A solution to the CSP is an n-tuple (ai)
n
i=1 such that ai ∈ Di

and the relevant ai’s are in the relations of all the constraints in C.

Example 2.6 (n queens). Imagine an n×n chess board. How can one place n queens

on the board so that no two queens threaten each other (i.e., are not on the same column,

row, or diagonal)? This is the famous n queens problem—a common example in the
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constraint programming literature. The solution we describe here is adapted from a

constraint modelling tutorial [Stuckey et al., 2022].

First, note that each column (i.e, file) must have exactly one queen. Let (qi)
n
i=1

be variables with domains qi ∈ {1, . . . ,n}, where we use qi = j to denote that the ith

column queen is on row (i.e., rank) j. Then the entire problem can be described by the

following three constraints.

Constraint 2.1. alldifferent({qi }n
i=1)

Constraint 2.2. alldifferent({qi + i | i = 1, . . . ,n})

Constraint 2.3. alldifferent({qi− i | i = 1, . . . ,n})

Here, alldifferent is a constraint on a set of variables (or ‘derivatives’ of vari-

ables) that constrains them to be all different. Constraint 2.1 requires all queens to

occupy different rows, and Constraints 2.2 and 2.3 do the same for both diagonals.

Note that, given one solution to the n-queens problem, we can easily find seven

others just by rotating and flipping the board in every possible way (i.e., the symmetry

group of a square has order 8). Thus, there is no reason for the constraint solver to find

all eight symmetrical solutions independently. Avoiding this kind of excessive effort is

the goal of symmetry breaking constraints.

While some symmetry breaking constraints can be expressed using variables (qi)
n
i=1,

others could benefit from a different representation. Specifically, let B = (bi j) be an

n× n matrix, where each bi j ∈ {true,false} indicates whether the (i, j)th square

contains a queen. Constraints that connect different representations of the same problem

are called channelling constraints. In this case, the following constraint is sufficient.

Constraint 2.4 (Channelling). For all i, j = 1, . . . ,n, we have that bi j ⇐⇒ (qi = j).

Finally, the following is an example of a symmetry breaking constraint.

Constraint 2.5 (Symmetry breaking). B is lexicographically smaller than or equal to

B⊤ (i.e., the transpose of B).

Perhaps the most canonical way of solving a CSP is by backtracking search. At

each step, the algorithm selects a variable xi, a value v ∈ Di, sets

xi := v, (2.1)

and continues this process until either all constraints are satisfied or some constraint

can no longer be satisfied.
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Sometimes making a decision (i.e., setting a variable to be equal to a value as

in Equation (2.1)) leads to other variable-value combinations becoming evidently

impossible. For example, after placing a queen on a1 (i.e., setting q1 := 1), Constraint 2.1

tells us that no other queen can be placed on the first row (i.e., qi ̸= 1 for all i = 2, . . . ,n).

Purging such impossible values from domains is the job of (constraint) propagation

(or inference) algorithms. These algorithms are designed separately for each type of

constraint and vary in their complexity and efficacy (i.e., how many values they are able

to remove).

Another issue that needs to be addressed on a per-constraint basis is: how do we

know when a constraint is satisfied? Indeed, if all constraints are already satisfied, then

it must be the case that setting all remaining variables to any values produces a valid

solution. This problem is known as entailment. Entailment algorithms take a CSP with

a (potentially partial) variable-value assignment and return one out of three possible

values:

true if the constraint is already satisfied,

false if it is impossible to satisfy the constraint,

maybe/undefined if neither of the above is seemingly the case.

Backtracking search has important choices to make: which variable should be given

a value first? Which value from a domain is most likely to lead to a solution? These

questions are answered by variable and value ordering heuristics, respectively. For

example, we can choose a variable with the smallest number of values remaining in its

domain—this is known as the dom, smallest domain first, or first fail heuristic. Value

ordering heuristics typically consider what the sizes of all domains would be given each

instantiation of the selected variable and choose the value that minimises either their

sum or their product [van Beek, 2006]. Both kinds of heuristics can also be random, e.g.,

a variable or a value can be sampled from a uniform distribution. Random heuristics

are typically combined with a restart strategy that decides how long the search should

continue before assuming that a mistake must have been made and restarting the search

[van Beek, 2006].

2.3 Representations of Probability Distributions

In what follows, we assume that the reader is familiar with the basic ideas of probability

theory. For reference, one might wish to consult a book by, e.g., Loève [1977] or Stroock
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[2010] for a comprehensive treatment of probability theory and its measure-theoretic

foundations. Unless specified otherwise, by probability distribution we mean a discrete

probability distribution. Moreover, we are typically only interested in probability dis-

tributions with finite support. With these restrictions, one could define a probability

distribution by listing all combinations of values and assigning a probability to each.

However, in most realistic scenarios, the same information could be described more

succinctly by taking advantage of concepts such as random variable independence,

conditional independence, and exchangeability. In this section, we describe some

representations of probability distributions and their semantics. Section 2.3.1 is about

representations based on graphs, whereas Section 2.3.2 covers probabilistic program-

ming languages. These representations also differ in their ability to reason about sets

of random variables. Propositional models treat each random variable as a unique

individual. In contrast, relational models work over sets of individuals and relations

among them. See the book by De Raedt et al. [2016] for more detail.

2.3.1 Representations Based on Graphical Models

Perhaps the best-known representations of probability distributions are probabilistic

graphical models (PGMs), i.e., probabilistic models that use a graph-based repres-

entation to compactly encode a probability distribution. These graphs can be either

directed (as in the case of Bayesian networks) or undirected (as in the case of Markov

networks). This section provides a brief overview of these two networks although there

are also other PGMs such as factor graphs [Loeliger, 2004, De Raedt et al., 2016] as

well as graphical models that capture concepts other than probabilities, e.g., constraint

networks, cost networks, and influence diagrams [Dechter, 2019]. For more information

on PGMs, see some of the many books on the subject [Dechter, 2019, Koller and

Friedman, 2009, Pearl, 1989].

Example 2.7 (A classic example). Suppose you have a burglar alarm in your home.

The alarm is likely (but not guaranteed) to be activated when a burglar enters, but it

might also be activated by a larger earthquake or even for no apparent reason. (There

might even be an earthquake at the time of a burglary!) Furthermore, suppose you have

two neighbours: John and Mary. Independently, either of them might call you if they

hear your alarm ringing or for some other reason. Let the following (binary) random

variables denote the relevant events:

B — a burglar entering your home,
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A

B E

J M

(a) a Bayesian network

A

B E

J M

(b) a Markov network

Figure 2.2: Two PGMs that describe the independence structure of Example 2.7.

b e a Pr(A = a | B = b,E = e)

false 0.999
false

true 0.001

false 0.71
false true

true 0.29

false 0.06
true false

true 0.94

false 0.05
true

true 0.95

Table 2.1: An example CPT for Pr(A | B,E) from Example 2.7.

E — an earthquake happening near your home,

A — your burglar alarm activating,

J — John calling you,

M — Mary calling you.

The graph of a Bayesian network for this example scenario is in Figure 2.2a. This

directed acyclic graph (DAG) tells us that the joint probability distribution can be

factored as

Pr(B,E,A,J,M) = Pr(B)×Pr(E)×Pr(A | B,E)×Pr(J | A)×Pr(M | A), (2.2)

i.e., the probability of each random variable is conditioned on its parents in the graph.

The factors in Equation (2.2) can be described using conditional probability tables

(CPTs). CPTs assign a probability to each combination of values that the random

variable and its parents can take—see Table 2.1 for an example.



20 Chapter 2. Background

Alternatively, the same probability distribution can be represented as an undirected

PGM known as a Markov network (or Markov random field). The graph of such a

network for Example 2.7 is in Figure 2.2b. Here, instead of CPTs, potentials are the

building blocks out of which a probability distribution is constructed. A potential

is a function from (some subset of) random variables to non-negative real numbers.

Potentials are typically defined on the maximal cliques of the network. The edge sets of

the three maximal cliques in Figure 2.2b are highlighted in different colours. Thus, the

full probability distribution can be factored as

Pr(B,E,A,J,M) =
1
Z
×ψ1(B,E,A)×ψ2(A,J)×ψ3(A,M),

where ψ1, ψ2, and ψ3 are potentials, and Z is a normalisation constant known as the

partition function.

What if we wanted to generalise Example 2.7 to support any number of neighbours,

all of whom behave identically (i.e., have the same probabilities of calling in all

circumstances)? Both Bayesian and Markov networks have been extended for such

scenarios: relational Bayesian networks [Jaeger, 1997] can compactly describe a

probability distribution over a relational structure, and Markov logic networks (also

known as Markov logic) [Richardson and Domingos, 2006] extend Markov networks

with support for first-order logic. The field of learning such representations from data

is known as statistical relational learning [De Raedt et al., 2016]. The next section

describes relational representations that are based on programming languages instead

of graphical models.

2.3.2 Probabilistic Programming

Augmenting a programming language with probabilities is another common way to

compactly represent probability distributions. Logic programming languages, in par-

ticular, have been frequently used for this purpose. Examples of probabilistic logic

programming languages include the independent choice logic [Poole, 1997, 2008],

PRISM [Sato and Kameya, 1997, 2008], ProbLog [De Raedt et al., 2007] and CP-logic

[Vennekens et al., 2009]. Functional and imperative programming languages have also

seen some use, examples of which include BUGS [Gilks et al., 1994], IBAL [Pfeffer,

2001], Church [Goodman et al., 2008], and Stan [Stan Development Team, 2022].

More information on probabilistic logic programming, probabilistic programming more

generally, and statistical relational artificial intelligence can be found in the work of De

Raedt et al. [2008], Gordon et al. [2014], and De Raedt et al. [2016], respectively.
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Listing 2.1: A ProbLog program that computes Pr(B | J,M) for the scenario described in

Example 2.7.

neighbour(john).

neighbour(marry).

0.001 :: burglary.

0.002 :: earthquake.

0.95 :: alarm :- burglary , earthquake.

0.94 :: alarm :- burglary , \+ earthquake.

0.29 :: alarm :- \+ burglary , earthquake.

0.001 :: alarm :- \+ burglary , \+ earthquake.

0.8 :: calls(X) :- alarm , neighbour(X).

0.1 :: calls(X) :- \+ alarm , neighbour(X).

evidence(calls(john)).

evidence(calls(mary)).

query(burglary).

Listing 2.1 contains a probabilistic program that encodes the information in Ex-

ample 2.7. In preparation for Chapter 6, let us examine the syntax and semantics

of ProbLog more closely. ProbLog clauses are exactly like Prolog clauses (see Sec-

tion 2.2.1) but with p :: prepended, for some probability p. Without ::, the probability

associated with the clause is implicitly equal to 1. ProbLog also has keywords evidence

and query that are used to define one or more (potentially conditional) probabilities

of interest. Reading off the probabilities from Listing 2.1, we can, e.g., compute the

probability that John calls as

Pr( j) = Pr(b)Pr(e)Pr(a | b,e)Pr( j | a)

+Pr(b)Pr(e)Pr(¬a | b,e)Pr( j | ¬a)

+ · · ·

+Pr(¬b)Pr(¬e)Pr(¬a | ¬b,¬e)Pr( j | ¬a)

= 0.001×0.002×0.95×0.8+ · · ·

≈ 0.102.
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More formally, the probability of a query is the sum of the probabilities of the models

of the query (c.f. WMC).

2.4 Knowledge Compilation and Representation

Knowledge compilation is the process of transforming the initial representation of some

data (usually based on propositional logic) to a representation that allows one to perform

various operations and answer queries of interest in time polynomial in the size of this

new representation. Many such representations have been proposed [Darwiche and

Marquis, 2002]. Amongst them, those particularly relevant to WMC and probabilistic

inference are:

• deterministic decomposable negation normal form (d-DNNF) [Darwiche, 2001b],

• sentential decision diagrams (SDDs) [Darwiche, 2011],

• (ordered) binary decision diagrams (BDDs) [Bryant, 1986],

• and algebraic decision diagrams (ADDs) [Bahar et al., 1997].

The first two items on this list are described in Sections 2.4.1 and 2.4.2, respectively, and

the last two are covered in more detail in Section 2.4.3. While knowledge compilation

is a process (which is performed by algorithms), here our focus is on the representations

themselves.

2.4.1 NNF and d-DNNF

Definition 2.3. A propositional formula φ is in negation normal form (NNF) if

• the only operators in φ are ¬, ∨, and ∧,

• and ¬ is only applied to directly to variables.

Example 2.8. Formula ¬(C⇒ (¬A∧B)) can be transformed into NNF as follows:

¬(C⇒ (¬A∧B))≡ ¬(¬C∨ (¬A∧B))≡C∧ (A∨¬B)

using the definition of⇒ and De Morgan’s laws.
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(a) d-DNNF
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Figure 2.3: A d-DNNF and an SDD representation of C∧ (A∨¬B), together with the

corresponding vtree. The numbers 1 and 3 come from the in-order traversal of the vtree

and visually connect subtrees of both the SDD and the vtree.

Definition 2.4. The d-DNNF adds decomposability and determinism to the NNF.

Decomposability requires that, for every conjunction
∧n

i=1 φi, conjuncts φi and φ j

have no variables in common for all i ̸= j [Darwiche, 1999, 2001a]. Determinism

requires that, for every disjunction
∨n

i=1 φi, disjuncts φi and φ j contradict each other

(i.e., φi∧φ j ≡⊥) for all i ̸= j [Darwiche, 2001b].

Example 2.9. Formula (A∨¬B)∧ (A∨C) is neither decomposable nor deterministic.

It is not decomposable because {A,B}∩{A,C} = {A} ≠ /0. It is not deterministic

because, e.g., A∧¬B ̸≡ ⊥.

Example 2.10. Formula C∧ (A∨¬B) is decomposable but not deterministic. It is

decomposable because {C}∩{A,B}= /0. It is not deterministic because A∧¬B ̸≡ ⊥.

Example 2.11. Formula B∧C∧ [¬B∨ (A∧B)] is deterministic but not decomposable.

It is deterministic because ¬B∧A∧B ≡ ⊥. It is not decomposable because {B}∩
{A,B}= {B} ̸= /0.

Example 2.12. Formula C∧ [¬B∨ (A∧B)] is decomposable and deterministic. It is

decomposable because {C}∩ {A,B} = /0, and {A}∩ {B} = /0. It is deterministic

because ¬B∧A∧B≡⊥.

Note that the formulas in Examples 2.10 and 2.12 are equivalent, and the latter is

also pictured in Figure 2.3a.

2.4.2 SDDs

To define SDDs, we first need to define vtrees.
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Definition 2.5 (Pipatsrisawat and Darwiche [2008]). A vtree for a set of variables X is

a full binary tree T with a bijection between X and the leaves of T .

Let ⟨·⟩ denote the function that maps an SDD to the propositional formula that it

represents.

Definition 2.6 (Darwiche [2011]). Let V be a vtree for a set of variables X . Then S is

an SDD that respects V if one of the following is true:

• S =⊥ (⟨⊥⟩ :=⊥);

• S =⊤ (⟨⊤⟩ :=⊤);

• S = x, or S = ¬x, where x ∈ X is the variable bijectively associated with the only

node of V (⟨x⟩ := x, and ⟨¬x⟩ := ¬x);

• S = {(pi,si) | i = 1, . . . ,n} for some n ≥ 1, where primes { pi }n
i=1 and subs

{si }n
i=1 are SDDs such that:

– V has more than one node,

– each pi respects the left subtree of V ,

– each si respects the right subtree fo V .

– the primes form a partition, i.e.:

* ⟨pi⟩ ̸≡ ⊥ for all i = 1, . . . ,n (i.e., the primes are consistent),

* ⟨pi⟩∧ ⟨p j⟩ ≡ ⊥ for all i ̸= j (i.e., the primes are mutually exclusive),

* and
∨n

i=1⟨pi⟩ ≡ ⊤

(then ⟨S⟩ :=
∨n

i=1⟨pi⟩∧ ⟨si⟩).

Example 2.13. Let S = {(A,C),(¬A,{(¬B,C),(B,⊥)})}. Then S (as pictured in Fig-

ure 2.3b) is an SDD representation of C∧ (A∨¬B) that respects the vtree in Figure 2.3c.

Indeed,

⟨S⟩= (A∧C)∨ (¬A∧ [(¬B∧C)∨ (B∧⊥)])

≡ (A∧C)∨ (¬A∧¬B∧C)

≡C∧ (A∨ [¬A∧¬B])

≡C∧ ([A∨¬A]∧ [A∨¬B])

≡C∧ (⊤∧ [A∨¬B])

≡C∧ (A∨¬B).
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2.4.3 Other Decision Diagrams

NNF and d-DNNF are normal forms of propositional formulas. Thus—even though

they can be represented diagrammatically as trees or circuits—a formula in (d-D)NNF

(just like in CNF) is still a formula. The same applies to SDDs: while we defined them

as nested sets and tuples, ⟨S⟩ of an SDD S is just a propositional formula with a certain

structure. In contrast, the two representations we describe here—BDDs and ADDs—are

defined as DAGs rather than normal forms.

Both BDDs and ADDs represent functions. BDDs represent Boolean functions, i.e.,

maps of the form {0,1}n→{0,1} for some n≥ 0, where {0,1} can be replaced by

any other two-element set. A propositional formula is simply a particular representation

of a Boolean function. ADDs, on the other hand, represent pseudo-Boolean functions,

i.e., maps of the form {0,1}n→ R. Equivalently, we can write 2X for {0,1}n, where

X is any n-element set, and 2X denotes its powerset. The elements of X are then called

variables. With this characterisation, pseudo-Boolean functions are also known as set

functions.

Pseudo-Boolean functions, most commonly represented as ADDs (although a tensor-

based approach has also been suggested [Dudek et al., 2019, 2020b]), have seen extens-

ive use in value iteration for Markov decision processes [Hoey et al., 1999], both exact

and approximate Bayesian network inference [Chavira and Darwiche, 2007, Gogate

and Domingos, 2011], and sum-product network to Bayesian network conversion [Zhao

et al., 2015]. ADDs have been extended to compactly represent additive and multiplicat-

ive patterns in the image of the function [Sanner and McAllester, 2005] and to support

first-order logic [Sanner and Boutilier, 2009] and continuous variables [Sanner et al.,

2011]. This last extension was also applied to weighted model integration [Belle et al.,

2015, Kolb et al., 2018].

Informally, both BDDs and ADDs are like decision trees (whose leaves correspond

to elements of the image of the function that is being represented) but compressed into

a DAG. Below we define ADDs—the definition of BDDs simply requires replacing R
with {0,1}. Our definition is partially based on the original definition by Bahar et al.

[1997] as well as recent work by Dudek et al. [2020b] but states some details more

explicitly. The definition can also be generalised to use any set instead of R and to

represent several functions instead of just one. For a directed graph G, let L(G) denote

the set of sinks of G.

Definition 2.7. Given a set of variables X and a variable ordering represented as an
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injection σ : X → N+, an ADD is a tuple (G,r,ρ,χ,ε) where:

• G is a rooted DAG with root r ∈ V (G) (i.e., there is a directed path from r to any

other node),

• ρ : L(G)→ R labels sinks with real numbers,

• χ : V (G)\L(G)→ X labels other nodes with variable names,

• and ε : E(G)→{0,1} labels edges.

Moreover, the following properties must be satisfied.

• Every node has outdegree either zero or two. In the latter case, the two outgoing

edges e, f ∈ E(G) are such that ε(e) ̸= ε( f ). If e = (v,u), and f = (v,w) for

some u,v,w ∈ V (G) are such that ε(e) = 1, and ε( f ) = 0, then u is the positive

successor of v, and w is the negative successor of v.

• For every directed path with node sequence v1,v2, . . . ,vn such that vi ̸∈ L(G) for

all i, we have that σ(χ(vi))< σ(χ(vi+1)) for all i = 1,2, . . . ,n−1.

We say that an ADD has variable x ∈ X if there is a node v ∈ V (G)\L(G) such that

χ(v) = x.

To view an ADD as a pseudo-Boolean function, given an interpretation ι : X →
{true,false}, start at the root and follow the outgoing edges until you reach a sink.

If at node v ∈ V (G) \L(G) we have that ι(χ(v)) = true, then follow the outgoing

edge e with ε(e) = 1, otherwise follow the outgoing edge f with ε( f ) = 0. Once you

reach a sink l ∈ L(G), then ρ(l) is the value of the represented function at ι (where ι is

interpreted as a subset of X).

Example 2.14. Let f : 2{x,y}→ R be a pseudo-Boolean function defined as f ( /0) =

f ({x}) = f ({x,y}) = 0.1, and f ({y}) = 0.3 and σ : {x,y} → N+ be the variable

ordering function defined as σ(x) = 1, and σ(y) = 2. Then the canonical ADD for f

under σ is pictured in Figure 2.4b5 and can be formally defined as (G,a,ρ,χ,ε), where:

• V (G) = {a,b,c,d },

• E(G) = {(a,b),(a,c),(b,c),(b,d)},

• ρ(c) = 0.1, ρ(d) = 0.3,

5See Figure 2.4a for a BDD equivalent to the d-DNNF and the SDD in Figure 2.3.
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(a) BDD
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(b) ADD

Figure 2.4: Example BDD (for the formula C∧ (A∨¬B)) and ADD (for the function f in

Example 2.14). An edge e is dashed if ε(e) = 0 and solid otherwise, where ε is as in

Definition 2.7.

• χ(a) = A, χ(b) = B,

• ε((a,c)) = ε((b,d)) = 1, and ε((a,b)) = ε((b,c)) = 0.

We end our discussion of BDDs and ADDs by describing some of their properties

as well as operations on them.

Fact 2.1 (Bahar et al. [1997]). Let X be a set of variables and σ : X → N+ be an

ordering function. For any subset of variables Y ⊆ X and pseudo-Boolean function

f : 2Y → R, there is a unique (up to isomorphism) canonical ADD for f . Any ADD for

f can be reduced to its canonical form in time linear in the number of nodes.

Fact 2.2. The canonical ADD for a pseudo-Boolean function 2X → R has at most

2|X |+1 nodes. This upper bound is achieved when the function is injective.

The operations pertinent to our needs are listed in Table 2.2: reduction of an ADD

to its canonical form, addition/multiplication as well as scalar addition/multiplication,

two types of restrictions, and projection. For a more detailed description, we refer the

reader to previous work [Bahar et al., 1997, Dudek et al., 2020a]. The linear reduction

algorithm is by Somenzi [2015], the algorithms for most other operations are by Bryant

[1986], and the complexity of projection comes as a corollary of the complexities of all

other operations.

When referring to ADDs and their use in algorithms, we make a few simplifying

assumptions. First, we assume that projection has the lowest precedence and extend the

definition to allow for sets of variables. For any W = {wi }k
i=1⊆ X , let ∃W f : 2X\W →R

be defined as ∃W f (Z) := ∃w1∃w2 · · ·∃wk f (Z) for all Z ⊆ X \W , where the order of wi’s

is immaterial. Second, we assume that after every operation on ADDs, the resulting



28 Chapter 2. Background

Operation Definition Complexity

reduce f O(n)

r+ f , r f r+ f : 2X → R, (r+ f )(Z) := r+ f (Z) O(n)

f +g, f g f +g : 2X∪Y → R, ( f +g)(Z) := f (Z)+g(Z) O(mn)

f |x=0 f |x=0 : 2X\{x}→ R, f |x=0(Z) := f (Z) O(n)

f |x=1 f |x=1 : 2X → R, f |x=1(Z) := f (Z∪{x}) O(n)

∃x f ∃x f : 2X\{x}→ R, ∃x f (Z) := f |x=0(Z)+ f |x=1(Z) O(n2)

Table 2.2: Operations on ADDs, their definitions, and the time complexity of the best-

known algorithm for performing each operation. Let f : 2X → R and g : 2Y → R be

pseudo-Boolean functions represented by ADDs with n and m nodes, respectively, and

let r ∈ R, and x ∈ X .

ADD is reduced to its canonical form and write ‘the ADD for function f ’ to mean

‘the canonical ADD for f ’. Third, while ADDs and the functions they represent could

change throughout the execution of an algorithm, we consider the set of all relevant

variables X and the ordering function σ : X → N+ to be fixed.

2.5 Applications of WMC

WMC is heavily used in machine learning, where recent applications of WMC include

explainability [Van den Broeck et al., 2021] and computing the loss function of a neural-

symbolic system [Tsamoura et al., 2021, Xu et al., 2018]. The most well-researched

application of WMC, however, is inference for PGMs such as Bayesian networks [Bart

et al., 2016, Chavira and Darwiche, 2005, 2006, Darwiche, 2002, Sang et al., 2005a].

Originally, this approach was motivated by context-specific independence, i.e., the

independence of random variables created by conditioning the probability distribution

[Boutilier et al., 1996]. Deconstructing a graphical model to a propositional formula

makes such independencies easier to exploit [Darwiche, 2002]. Moreover, WMC is

used for inference in probabilistic programming languages such as ProbLog [Fierens

et al., 2015, Vlasselaer et al., 2016a] and Dice [Holtzen et al., 2020b].

Indeed, WMC and WFOMC play an important role in inference for statistical

relational models such as ProbLog and Markov logic [De Raedt et al., 2016, Van den

Broeck, 2011]. Such models are often used in natural language processing for tasks
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such as knowledge/information extraction [Bunescu and Mooney, 2007, Poon and

Vanderwende, 2010]. In natural language processing, statistical relational models have

been used to annotate articles [Verbeke et al., 2012], learn facts about the world from

reading websites [Carlson et al., 2010], and solve simple probability problems described

in a natural language [Dries et al., 2017]. Similarly, they have been applied to stream

mining [Chandra et al., 2014], predicting criminal activity [Delaney et al., 2010], and

predicting how soon a component or a machine will have to be replaced [Vlasselaer

and Meert, 2012]. In robotics, statistical relational models have been used to learn

object affordances [Moldovan et al., 2011, 2012, Moldovan and De Raedt, 2014] and

as an expressive knowledge representation system for robot control [Jain et al., 2009].

Finally, applications in bioinformatics include the analysis of breast cancer [Côrte-Real

et al., 2017, Nassif et al., 2013], genetic [Sakhanenko and Galas, 2012], and molecular

profiling [De Maeyer et al., 2013] data.

Although it is hard to anticipate how the contributions of this work might affect all

of these applications, efficiency improvements can enable new applications for which

current WMC is not fast enough. This is especially the case for WFOMC, where said

improvements usually bring classes of instances from exponential to polynomial time.

At the very least, WMC-based approaches should be able to handle bigger and more

complex data sets regardless of their origin. Note that although we use Bayesian network

probabilistic inference as the principal example on several occasions, our research is

chiefly foundational and not necessarily motivated by any one application.





Chapter 3

WMC with Conditional Weights for
Bayesian Networks

3.1 Introduction

WMC, the way we defined it in Section 2.1.1, assigns weights to models based on

weights on literals, i.e., the weight of a model is the product of the weights of all

literals in it. This simplification is motivated by the fact that the number of models

scales exponentially with the number of atoms, so listing the weight of every model

is intractable. However, this also severely restricts what probability distributions can

be represented. A common way to overcome this limitation is by adding more literals.

While we show that this is always possible, we demonstrate that it can be significantly

more efficient to encode weights in a more flexible format instead.

After briefly reviewing the background in Section 3.2, in Section 3.3 we describe

three equivalent perspectives on the subject based on logic, set theory, and Boolean

algebras. Furthermore, we describe the space of functions on Boolean algebras and

various operations on those functions. Section 3.4 introduces WMC as the problem of

computing the value of a measure on a Boolean algebra. We show that not all measures

can be represented using literal-based WMC, but all Boolean algebras can be extended

to make any measure representable in such a manner.

This new perspective allows us to not only encode any discrete probability dis-

tribution but also improve inference speed. In Section 3.5 we demonstrate this by

developing a new WMC encoding for Bayesian networks that uses conditional weights

on literals (in the spirit of conditional probabilities) that have literal-based WMC as a

special case. We prove the correctness of the encoding and show how a WMC solver

31
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ADDMC [Dudek et al., 2020a] can be adapted to the new format. ADDMC is a

recently-proposed algorithm for WMC based on manipulating functions on Boolean

algebras using an efficient representation for such functions known as algebraic de-

cision diagrams (ADDs) [Bahar et al., 1997]. Our experiments in Section 3.6 focus

on improving the performance of ADDMC on instances that originate from Bayesian

networks. We show how our new encoding improves inference on the vast majority

of benchmark instances, often by one or two orders of magnitude. We explain the

performance benefits by showing how our encoding has asymptotically fewer variables

and ADDs.

3.2 Related Work

Performing inference on Bayesian networks by encoding them into instances of WMC

is a well-established idea with a history of more than twenty years. Five encodings

have been proposed so far (we will identify them based on the initials of authors as

well as publications years): d02 [Darwiche, 2002], sbk05 [Sang et al., 2005a], cd05

[Chavira and Darwiche, 2005], cd06 [Chavira and Darwiche, 2006], and bklm16 [Bart

et al., 2016]1. Below we summarise the observed performance differences among them.

Sang et al. [2005a] claim that sbk05 is a smaller encoding than d02 with respect to

both the number of clauses and the number of variables but provide no experimental

comparison. Chavira and Darwiche [2005] compare cd05 with d02 by measuring the

time it takes to compile either encoding into an arithmetic circuit. They show that cd05

always compiles faster and results in a smaller arithmetic circuit (as measured by the

number of edges). In their subsequent paper, the same authors perform two sets of

experiments (that are relevant to this summary) [Chavira and Darwiche, 2006]. First,

they compile cd05 and cd06 encodings into d-DNNF (i.e., deterministic decompos-

able negation normal form [Darwiche, 2001b]), measuring both compilation time and

numbers of edges in the d-DNNF diagram. The results are mostly in favour of cd06.

Second, they compare the inference time of sbk05 run with CACHET [Sang et al., 2004]

with the compile times of cd05 and cd06, but only on five (types of) instances. In

these experiments, cd06 is always faster than cd05, while the comparison with sbk05

is mixed. The performance difference between sbk05 and cd05 is even harder to judge:

sbk05 is better on three out of five instances and worse on the remaining two. Finally,

1Vomlel and Tichavský [2013] also propose an encoding, but only for networks of a particular bipartite
structure and without any evaluation.
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Bart et al. [2016] introduce bklm16 and show that it has both fewer variables and fewer

clauses than cd06. Their experiments show bklm16 to be superior to cd06 with respect

to both compilation time and encoding size when both are compiled using C2D2 [Dar-

wiche, 2004] but inferior to cd06 when cd06 is compiled using ACE3 (which still uses

C2D but considers the structure of the Bayesian network along with its encoding). Our

experiments in Section 3.6 confirm some of the findings outlined in this section while

also showing that the performance of each encoding depends on the WMC algorithm in

use, and smaller encodings are not necessarily faster.

ADDMC [Dudek et al., 2020a] is conceptually similar to symbolic variable elimina-

tion (SVE) [Sanner and Abbasnejad, 2012] and related attempts [Sanner and McAllester,

2005] to perform probabilistic inference by multiplying ADDs and eliminating variables.

Indeed, on a graphical model with binary random variables, the principal advantage of

ADDMC over SVE comes only from more flexibility in what heuristics guide the order

of multiplications and eliminations. Both algorithms have heuristics for the orders in

which variables appear in an ADD and are eliminated. ADDMC also has a heuristic

for the order in which ADDs are multiplied. SVE has a built-in bucket elimination

[Dechter, 1999] heuristic: it multiplies all ADDs that have some variable v and then

eliminates v. As an alternative to bucket elimination, ADDMC finds Bouquet’s method

[Bouquet, 1999] to be equally strong. Here, two ADDs are multiplied if they have the

same worst (rather than best) variable according to the variable elimination heuristic.

3.3 Boolean Algebras, Power Sets, and Propositional

Logic

In this section, we give a brief introduction to two alternative ways to think about

logical constructs such as models and formulas. Let us consider a simple example of a

propositional logic L with only two atoms a and b, and let U = {a,b}. Then 2U , the

power set of U , is the set of all models of L , and 22U
is the set of all formulas. These sets

can also be represented as Boolean algebras (e.g., using the syntax (22U
,∧,∨,¬,⊥,⊤))

with a partial order ≤ that corresponds to set inclusion ⊆—see Table 3.1 for examples

of how various elements can be represented in both notations. Most importantly, note

that the word atom has completely different meanings in logic and Boolean algebras.

An atom in L is an atomic formula, i.e., an element of U , whereas an atom in a
2http://reasoning.cs.ucla.edu/c2d/
3http://reasoning.cs.ucla.edu/ace/

http://reasoning.cs.ucla.edu/c2d/
http://reasoning.cs.ucla.edu/ace/
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Boolean algebra is (in set-theoretic terms) a singleton set. For instance, an atom in 22U

corresponds to a model of L , i.e., an element of 2U . Unless referring specifically to

a logic, we will use the algebraic definition of an atom and refer to logical atoms as

variables. In the rest of the paper, for any set U , we will use set-theoretic notation for

2U and Boolean-algebraic notation for 22U
, except for (Boolean) atoms in 22U

that are

denoted as {x} for some model x ∈ 2U .

3.3.1 Functions on Boolean Algebras

We also consider the space of all functions from any Boolean algebra to R≥0 together

with some operations on those functions. They will be instrumental in defining WMC as

a measure in Section 3.4 and can be efficiently represented using ADDs. Furthermore,

all of the operations are supported by CUDD [Somenzi, 2015]—a package used by

ADDMC for ADD manipulation [Dudek et al., 2020a]. The definitions of multiplication

and projection are as defined by Dudek et al. [2020a], while others are new.

Definition 3.1 (Operations on functions). Let α : 2X → R≥0 and β : 2Y → R≥0 be

functions, p ∈ R≥0, and x ∈ X . We define the following operations:

Addition: α+β : 2X∪Y → R≥0 is such that (α+β)(T ) = α(T ∩X)+β(T ∩Y ) for all

T ∈ 2X∪Y .

Multiplication: α ·β : 2X∪Y → R≥0 is such that (α ·β)(T ) = α(T ∩X) ·β(T ∩Y ) for

all T ∈ 2X∪Y .

Scalar multiplication: pα : 2X →R≥0 is such that (pα)(T ) = p ·α(T ) for all T ∈ 2X .

Complement: α : 2X → R≥0 is such that α(T ) = 1−α(T ) for all T ∈ 2X .

Projection: ∃xα : 2X\{x}→ R≥0 is such that (∃xα)(T ) = α(T )+α(T ∪{x}) for all

T ∈ 2X\{x}. For any Z = {z1, . . . ,zn } ⊆ X , we write ∃Z to mean ∃z1 . . .∃zn .

In summary, addition, multiplication, and scalar multiplication are defined pointwise,

while complement and projection interact with the algebraic structure of the domains

2X and 2Y . Specifically, note that both addition and multiplication are both associative

and commutative. We end the discussion on function spaces by defining several special

functions: unit 1 : 2 /0→R≥0 defined as 1( /0) = 1, zero 0: 2 /0→R≥0 defined as 0( /0) = 0,

and function [a] : 2{a}→R≥0 defined as [a]( /0) = 0, [a]({a}) = 1 for any a. Henceforth,

for any function α : 2X → R≥0 and any set T , we will write α(T ) to mean α(T ∩X).
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3.4 WMC as a Measure on a Boolean Algebra

In this section, we introduce an alternative definition of WMC and demonstrate how

it relates to the standard one. Let U be a set. A measure is a function µ : 22U → R≥0

such that µ(⊥) = 0, and µ(a∨b) = µ(a)+µ(b) for all a,b ∈ 22U
whenever a∧b =⊥

[Gaifman, 1964, Jech, 1997]. A weight function is a function ν : 2U → R≥0. A weight

function is factored if ν = ∏x∈U νx for some functions νx : 2{x}→ R≥0, x ∈U . We

say that a weight function ν : 2U → R≥0 induces a measure µν : 22U → R≥0 if µν(x) =

∑{u}≤x ν(u).

Theorem 3.1. The function µν is a measure.

Proof. Note that µν(⊥) = 0 since there are no atoms below ⊥. Let a,b ∈ 22U
be such

that a∧b =⊥. By elementary properties of Boolean algebras, all atoms below a∨b are

either below a or below b. Moreover, none of them can be below both a and b because

then they would have to be below a∧b =⊥. Thus

µν(a∨b) = ∑
{u}≤a∨b

ν(u) = ∑
{u}≤a

ν(u)+ ∑
{u}≤b

ν(u) = µν(a)+µν(b)

as required.

Finally, a measure µ : 22U → R≥0 is factorable if there exists a factored weight

function ν : 2U → R≥0 that induces µ. In this formulation, WMC corresponds to the

process of calculating the value of µν(x) for some x ∈ 22U
with a given definition of ν.

Example 3.1 (Relation to the classical (logic-based) view of WMC). Let a and b be

variables and w : {a,b,¬a,¬b} → R≥0 be a weight function defined as w(a) = 0.3,

w(¬a) = 0.7, w(b) = 0.2, w(¬b) = 0.8. Then formula a has two models: {a,b} and

{a,¬b}, and its WMC is

WMC(a) = ∑
ω|=a

∏
ω|=l

w(l) = w(a)w(b)+w(a)w(¬b) = 0.3. (3.1)

Alternatively, we can define νa : 2{a} → R≥0 as νa({a}) = 0.3, νa( /0) = 0.7 and

νb : 2{b}→ R≥0 as νb({b}) = 0.2, νb( /0) = 0.8. Let µ be the measure on 22U
induced

by ν = νa ·νb. Then, equivalently to Equation (3.1), we can write

µ(a) = ν({a,b})+ν({a})

= νa({a})νb({b})+νa({a})νb( /0) = 0.3.

Thus, one can equivalently think of WMC as summing over models of a theory or over

atoms below an element of a Boolean algebra.
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3.4.1 Not All Measures Are Factorable

Using this new definition of WMC, we can show that WMC with weights defined on

literals is only able to capture a subset of all possible measures on a Boolean algebra.

This can be demonstrated with a simple example.

Example 3.2. Let U = {a,b} be a set of atoms and µ : 22U → R≥0 a measure defined

as µ(a∧b) = 0.72, µ(a∧¬b) = 0.18, µ(¬a∧b) = 0.07, µ(¬a∧¬b) = 0.03.4 If µ could

be represented using literal-weight (factored) WMC, we would have to find two weight

functions νa : 2{a}→ R≥0 and νb : 2{b}→ R≥0 such that ν = νa ·νb induces µ, i.e., νa

and νb would have to satisfy this system of equations:

νa({a}) ·νb({b}) = 0.72

νa({a}) ·νb( /0) = 0.18

νa( /0) ·νb({b}) = 0.07

νa( /0) ·νb( /0) = 0.03,

which has no solutions.

Alternatively, we can let b depend on a and consider weight functions νa : 2{a}→
R≥0 and νb : 2{a,b}→ R≥0 defined as νa({a}) = 0.9, νa( /0) = 0.1, and νb({a,b}) =
0.8, νb({a}) = 0.2, νb({b}) = 0.7, νb( /0) = 0.3. One can easily check that with these

definitions ν indeed induces µ.

Note that in this case, we chose to interpret νb as Pr(b | a) while—with a different

definition of νb that represents the joint probability distribution Pr(a,b)—νb by itself

could induce µ. In general, however, factoring the full weight function into several

smaller functions often results in weight functions with smaller domains which leads to

increased efficiency and decreased memory usage [Dudek et al., 2020a]. We can easily

generalise this example further.

Theorem 3.2. For any set U such that |U | ≥ 2, there exists a non-factorable measure

22U → R≥0.

Since many measures of interest may not be factorable, a well-known way to encode

them into instances of WMC is by adding more literals [Chavira and Darwiche, 2008].5

We can use the measure-theoretic perspective on WMC to show that this is always

4The value of µ on any other element of 22U
can be deduced from the definition of a measure.

5Similar encoding ideas have been proposed for the independent choice logic as well [Poole, 1997,
2008].
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possible, however, as we demonstrate and explain in Section 3.6, superfluous variables

can mislead heuristics, leading to significantly longer runtimes.

Theorem 3.3. For any set U and measure µ : 22U → R≥0, there exists a set V ⊇U, a

factorable measure µ′ : 22V → R≥0, and a formula f ∈ 22V
such that µ(x) = µ′(x∧ f )

for all formulas x ∈ 22U
.

Proof. Let V = U ∪{ fm | m ∈ 2U }, and f =
∧

m∈2U{m} ⇔ fm. We define weight

function ν : 2V → R≥0 as ν = ∏v∈V νv, where νv({v}) = µ({m}) if v = fm for some

m ∈ 2U and νv(x) = 1 for all other v ∈ V and x ∈ 2{v}. Let µ′ : 22V → R≥0 be the

measure induced by ν. It is enough to show that µ and x 7→ µ′(x∧ f ) agree on the atoms

in 22U
. For any {a} ∈ 22U

,

µ′({a}∧ f ) = ∑
{x}≤{a}∧ f

ν(x) = ν(a∪{ fa })

= ν fa({ fa }) = µ({a})

as required.

3.5 Encoding Bayesian Networks Using Conditional

Weights

In this section, we describe a way to encode Bayesian networks into WMC without

restricting oneself to factorable measures and thus having to add extra variables. We will

refer to it as cw. A Bayesian network is a directed acyclic graph with random variables as

nodes that defines a probability distribution over them. Let V denote this set of random

variables. For any random variable X ∈ V , let ImX denote its set of values and pa(X)

its set of parents. The full probability distribution is then equal to ∏X∈V Pr(X | pa(X)).

For discrete Bayesian networks (and we only consider discrete networks here), each

factor of this product can be represented by a conditional probability table (CPT).

See Figure 3.1 for an example Bayesian network that we will refer to throughout this

section. This network has three nodes, i.e., V = {W,F,T }. Two of them are binary

(i.e., ImW = ImF = {0,1}) and one is not (i.e., ImT = { l,m,h}). Also pa(W ) = /0,

and pa(F) = pa(T ) = {W }.

Definition 3.2 (Indicator variables). Let X ∈ V be a random variable. If X is binary

(i.e., | ImX |= 2), we can arbitrary identify one of the values as 1 and the other one as 0
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W

F T

w Pr(W = w)

1 0.5

0 0.5

w f Pr(F = f |W = w)

1 1 0.6

1 0 0.4

0 1 0.1

0 0 0.9

w t Pr(T = t |W = w)

1 l 0.2

1 m 0.4

1 h 0.4

0 l 0.6

0 m 0.3

0 h 0.1

Figure 3.1: An example Bayesian network with its CPTs.

(i.e, ImX ∼= {0,1}). Then X can be represented by a single indicator variable λX=1.

For notational simplicity, for any set S, we write λX=0 ∈ S or S = {λX=0, . . .} to mean

λX=1 ̸∈ S.

On the other hand, if X is not binary, we represent X with | ImX | indicator variables,

one for each value. We let

E(X) =

{λX=1 } if | ImX |= 2

{λX=x | x ∈ ImX } otherwise.

denote the set of indicator variables for X and E∗(X) = E(X)∪
⋃

Y∈pa(X)E(Y ) denote

the set of indicator variables for X and its parents in the Bayesian network. Finally,

let U =
⋃

X∈V E(X) denote the set of all indicator variables for all random variables

in the Bayesian network. For example, in the Bayesian network from Figure 3.1,

E∗(T ) = {λT=l,λT=m,λT=h,λW=1 }.

Algorithm 3.1 shows how a Bayesian network with nodes V can be represented

as a weight function φ : 2U → R≥0. The algorithm begins with the unit function

and multiplies it by CPTX : 2E∗(X) → R≥0 for each random variable X ∈ V . We

call each such function a conditional weight function as it represents a conditional

probability distribution. However, the distinction is primarily a semantic one: a function

2{a,b}→R≥0 can represent Pr(a | b), Pr(b | a), or something else entirely, e.g., Pr(a∧b),

Pr(a∨b), etc.
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Algorithm 3.1: Encoding a Bayesian network.
Input: set of random variables (i.e., nodes) V , probability distribution Pr

Output: pseudo-Boolean function φ : 2U → R≥0

1 φ← 1;

2 foreach random variable X ∈ V do
3 let pa(X) = {Y1, . . . ,Yn };
4 CPTX ← 0;

5 if | ImX |= 2 then
6 forall values (yi)

n
i=1 ∈∏

n
i=1 ImYi do

7 p1← Pr(X = 1 | y1, . . . ,yn);

8 p0← Pr(X ̸= 1 | y1, . . . ,yn);

9 CPTX ← CPTX + p1[λX=1] ·∏n
i=1[λYi=yi]+ p0[λX=1] ·∏n

i=1[λYi=yi];

10 else
11 let ImX = {x1, . . . ,xm };
12 forall values x ∈ ImX and (yi)

n
i=1 ∈∏

n
i=1 ImYi do

13 px← Pr(X = x | y1, . . . ,yn);

14 CPTX ← CPTX + px[λX=x] ·∏n
i=1[λYi=yi]+ [λX=x] ·∏n

i=1[λYi=yi];

15 CPTX ← CPTX · (∑m
i=1[λX=xi]) ·∏m

i=1 ∏
m
j=i+1([λX=xi]+ [λX=x j ]);

16 φ← φ ·CPTX ;

For a binary random variable X , CPTX is simply a sum of smaller functions, one for

each row of the CPT. If X has more than two values, we also multiply CPTX by ‘clause’

functions that restrict the value of φ(T ) to zero whenever |E(X)∩ T | ̸= 1, i.e., we

add mutual exclusivity constraints that ensure that each random variable is associated

with exactly one value. Note that Chavira and Darwiche [2007] use the same ADD

representation of CPTs for their compilation algorithm based on variable elimination.

For the example Bayesian network in Figure 3.1, we get:

CPTF = 0.6[λF=1] · [λW=1]+0.4[λF=0] · [λW=1]

+0.1[λF=1] · [λW=0]+0.9[λF=0] · [λW=0],

CPTT = ([λT=l]+ [λT=m]+ [λT=h])

· ([λT=l]+ [λT=m]) · ([λT=l]+ [λT=h])

· ([λT=m]+ [λT=h]) · . . . .
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3.5.1 Correctness

Algorithm 3.1 produces a function with a Boolean algebra as its domain. This function

can be represented by an ADD [Bahar et al., 1997]. ADDMC takes an ADD ψ : 2U →
R≥0 (expressed as a product of smaller ADDs) and returns (∃U ψ)( /0) [Dudek et al.,

2020a]. In other words, once ADDMC projects all of the variables in U , the remaining

function ∃U ψ has domain { /0} and maps /0 to the final answer. In this section, we prove

that the function φ produced by Algorithm 3.1 can be used by ADDMC to correctly

compute any marginal probability of the Bayesian network that was encoded as φ.6 We

begin with Lemma 3.1 which shows that any conditional weight function produces the

right answer when given a valid encoding of variable-value assignments relevant to the

CPT.

Lemma 3.1. Let X ∈V be a random variable with parents pa(X) = {Y1, . . . ,Yn }. Then

CPTX : 2E∗(X)→ R≥0 is such that for any x ∈ ImX and (y1, . . . ,yn) ∈∏
n
i=1 ImYi,

CPTX(T ) = Pr(X = x | Y1 = y1, . . . ,Yn = yn),

where T = {λX=x }∪{λYi=yi | i = 1, . . . ,n}.

Proof. If X is binary, then CPTX is a sum of 2∏
n
i=1 | ImYi| terms, one for each possible

assignment of values to variables X ,Y1, . . . ,Yn. Exactly one of these terms is nonzero

when applied to T , and it is equal to Pr(X = x | Y1 = y1, . . . ,Yn = yn) by definition.

If X is not binary, then (∑m
i=1[λX=xi]) (T ) = 1, and(

m

∏
i=1

m

∏
j=i+1

([λX=xi]+ [λX=x j ])

)
(T ) = 1,

so CPTX(T ) = Pr(X = x | Y1 = y1, . . . ,Yn = yn) by a similar argument as before.

Now, Lemma 3.2 shows that φ represents the full probability distribution of the

Bayesian network, i.e., it gives the right probabilities for the right inputs and zero

otherwise.

Lemma 3.2. Let V = {X1, . . . ,Xn }. Then

φ(T ) =


Pr(x1, . . . ,xn)

if T = {λXi=xi }
n
i=1 for

some (xi)
n
i=1 ∈∏

n
i=1 ImXi

0 otherwise,

for all T ∈ 2U .
6Note that it can just as well compute any probability expressed using the random variables in V .
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Proof. If T = {λX=vX | X ∈ V } for some (vX)X∈V ∈∏X∈V ImX , then

φ(T ) = ∏
X∈V

Pr

X = vX

∣∣∣∣∣∣ ∧
Y∈pa(X)

Y = vY

= Pr

( ∧
X∈V

X = vX

)

by Lemma 3.1 and the definition of a Bayesian network. Otherwise there must be some

non-binary random variable X ∈ V such that |E(X)∩T | ̸= 1. If E(X)∩T = /0, then

(∑m
i=1[λX=xi]) (T ) = 0, and so CPTX(T ) = 0, and φ(T ) = 0. If |E(X)∩T | > 1, then

we must have two different values x1,x2 ∈ ImX such that {λX=x1,λX=x2 } ⊆ T which

means that ([λX=x1 ]+[λX=x2])(T ) = 0, and so, again, CPTX(T ) = 0, and φ(T ) = 0.

We end with Theorem 3.4 that shows how φ can be combined with an encoding

of a single variable-value assignment so that ADDMC [Dudek et al., 2020a] would

compute its marginal probability.

Theorem 3.4. For any X ∈ V and x ∈ ImX,

(∃U(φ · [λX=x]))( /0) = Pr(X = x).

Proof. Let V = {X ,Y1, . . . ,Yn }. Then

(∃U(φ · [λX=x]))( /0) = ∑
T∈2U

(φ · [λX=x])(T )

= ∑
λX=x∈T∈2U

φ(T )

= ∑
λX=x∈T∈2U

(
∏

Y∈V
CPTY

)
(T )

= ∑
(yi)

n
i=1∈∏

n
i=1 ImYi

Pr(x,y1, . . . ,yn)

= Pr(X = x)

by:

• the proof of Theorem 1 by Dudek et al. [2020a];

• if λX=x ̸∈ T ∈ 2U , then

(φ · [λX=x])(T ) = φ(T ) · [λX=x](T ∩{λX=x }) = φ(T ) ·0 = 0;

• Lemma 3.2;

• marginalisation of a probability distribution.
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3.5.2 Textual Representation

Algorithm 3.1 encodes a Bayesian network into a function on a Boolean algebra, but

how does it relate to the standard interpretation of a WMC encoding as a formula in

conjunctive normal form (CNF) together with a collection of weights? The factors

of φ that restrict the values of indicator variables for non-binary random variables are

already expressed as a product of sums of 0/1-valued functions, i.e., a kind of CNF.

Disregarding these functions, each conditional weight function CPTX is represented

by a sum with a term for every subset of E∗(X). To encode these terms, we alter the

representation of weights in the WMC format used by CACHET [Sang et al., 2004]. For

instance, here is a representation of the Bayesian network from Figure 3.1:

λT=l λT=m λT=h 0

−λT=l −λT=m 0

−λT=l −λT=h 0

−λT=m −λT=h 0

w λW=1 0.5 0.5

w λF=1 λW=1 0.6 0.4

w λF=1 −λW=1 0.1 0.9

w λT=l λW=1 0.2 1

w λT=m λW=1 0.4 1

w λT=h λW=1 0.4 1

w λT=l −λW=1 0.6 1

w λT=m −λW=1 0.3 1

w λT=h −λW=1 0.1 1

where each indicator variable is eventually replaced with a unique positive integer.

In the original format, a line such as

w 1 0.3

would encode two weights: w(x1) = 0.3, and w(¬x1) = 1−0.3 = 0.7, and a line such

as

w 2 −1

would encode w(x2) = w(¬x2) = 1. Here, we split each line prefixed with a w into four

parts: the ‘main’ variable (always not negated), conditions (possibly none), and two

weights. For example, the line

w λT=m −λW=1 0.3 1
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encodes the function 0.3[λT=m] · [λW=1]+1[λT=m] · [λW=1] and can be interpreted as

defining two conditional weights: ν(T = m |W = 0) = 0.3, and ν(T ̸= m |W = 0) = 1,

the former of which corresponds to a row in the CPT of T while the latter is artificially

added as part of the encoding. In our encoding of Bayesian networks, it is always

the case that, in each weight clause, either both weights sum to one, or the second

weight is equal to one. Finally, note that the measure induced by these weights is not

probabilistic (i.e., µ(⊤) ̸= 1) by itself, but it becomes probabilistic when combined

with the additional clauses that restrict what combinations of indicator variables can

co-occur.

3.5.3 Changes to ADDMC

Here we describe two changes to ADDMC7 [Dudek et al., 2020a] needed to adapt

it to the new format. First, ADDMC constructs the primal graph of the input CNF

formula as an aid for the algorithm’s heuristics. We extend the usual definition of a

primal graph to functions on Boolean algebras (i.e., the factors of φ) in the obvious

way. For any pair of distinct variables u,v ∈U , we draw an edge between them in the

primal graph if there is a function α : 2X → R≥0 that is a factor of φ such that u,v ∈ X .

For instance, a factor such as CPTX will enable edges between all distinct pairs of

variables in E∗(X). Second, even though the function φ produced by Algorithm 3.1

is constructed to have 2U as its domain, sometimes the domain is effectively reduced

to 2V for some V ⊂U by the ADD manipulation algorithms that optimise the ADD

representation of a function. For a simple example, consider α : 2{a}→ R≥0 defined as

α({a}) = α( /0) = 0.5. Then α can be reduced to α′ : 2 /0→ R≥0 defined as α′( /0) = 0.5.

To compensate for these reductions, for the original WMC format with a weight

function w : U ∪{¬u | u ∈U }→ R≥0, ADDMC would multiply its computed answer

by ∏u∈U\V w(u)+w(¬u). With the new WMC format, we instead multiply the answer

by 2|U\V |. Each ‘excluded’ variable u ∈ U \V satisfies two properties: all weights

associated with u are equal to 0.5 (otherwise the corresponding CPT would depend on

u, and u would not be excluded), and all other CPTs are independent of u (or they may

have a trivial dependence, where the probability stays the same if u is replaced with its

complement). Thus, the CPT that corresponds to u still multiplies the weight of every

atom in the Boolean algebra by 0.5, but the number of atoms under consideration is

halved. To correct for this, we multiply the final answer by two for every u ∈U \V .

7https://github.com/vardigroup/ADDMC

https://github.com/vardigroup/ADDMC
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3.6 Experimental Results

We compare the six WMC encodings for Bayesian networks when run with both

ADDMC [Dudek et al., 2020a] and the WMC algorithms used in the original papers.8

We compare the encodings with respect to the total time it takes to encode a Bayesian

network, compile it or run a WMC algorithm on it, and extract the (numerical) answer.

Note that while all five papers that introduce other encodings include experimental

comparisons of encoding size, that is not feasible with ADDMC as even instances that

are fully solved in less than 0.1 s are too big to build the full ADD within reasonable

time and memory limits. The experiments were run on a computing cluster with Intel

Xeon Gold 6138 and Intel Xeon E5-2630 processors9 running Scientific Linux 7 with

a 32 GiB memory limit and a 1000 s timeout on both encoding and inference. For

inference, we use ACE for cd05 [Chavira and Darwiche, 2005], cd06 [Chavira and

Darwiche, 2006], and d02 [Darwiche, 2002]; CACHET10 [Sang et al., 2004] for sbk05

[Sang et al., 2005a]; and C2D [Darwiche, 2004] for compilation and QUERY-DNNF 11

for answer computation for bklm16 [Bart et al., 2016]. For encoding, we use BN2CNF

12 for bklm16, and ACE for all other encodings (except for cw, which is implemented in

Python).

ACE was not used to encode evidence, as preliminary experiments revealed that the

evidence-encoding implementation contains bugs that can lead to incorrect answers

or a Java exception being thrown on some instances of the data set (and the source

code is not publicly available). Instead, we simply list all the evidence as additional

clauses in the encoding. Furthermore, to ensure that bklm16 [Bart et al., 2016] (whether

run with ADDMC [Dudek et al., 2020a] or C2D [Darwiche, 2004]) returns correct

answers on most instances, we had to disable one of the improvements that bklm16

brings over cd06 [Chavira and Darwiche, 2006], namely, the construction of a scaling

factor that ‘absorbs’ one probability from each CDT [Bart et al., 2016]. For realistic

benchmark instances, this scaling factor can easily be below 10−30, and thus would

require arbitrary-precision floating-point arithmetic to be usable. Even a toy Bayesian

network with seven binary independent variables with probabilities 0.1 and 0.9 is

8Both cd05 and cd06 cannot be run with most WMC algorithms including ADDMC because these
encodings allow for additional models that the WMC algorithm is supposed to ignore [Chavira and
Darwiche, 2005, 2006].

9Each instance is run on the same processor for all encodings.
10https://henrykautz.com/Cachet/index.htm
11http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
12http://www.cril.univ-artois.fr/KC/bn2cnf.html

https://henrykautz.com/Cachet/index.htm
http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
http://www.cril.univ-artois.fr/KC/bn2cnf.html
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enough for BN2CNF to output precisely zero as the scaling factor. We note that this

issue likely remained unnoticed because Bart et al. [2016] did not attempt to compute

numerical answers in their experiments.

For each Bayesian network, we need to choose a probability to compute. Whenever

a Bayesian network comes with an evidence file, we compute the probability of evidence.

Otherwise, let X denote the last-mentioned random variable in the Bayesian network. If

true ∈ ImX , then we compute the marginal probability of X = true. Otherwise, we

pick the value of X which is listed first and calculate its marginal probability.

For experimental data, we use the Bayesian networks available with ACE and

CACHET [Sang et al., 2004], most of which happen to be binary. We classify them into

the following seven categories:

• DQMR (390 instances) and

• Grid networks (450 instances) as described by Sang et al. [2005a],

• Mastermind (144 instances), and

• Random Blocks (256 instances) from the work of Chavira et al. [2006],

• remaining binary Bayesian networks (50 instances) that include Plan Recognition

[Sang et al., 2005a], Friends and Smokers, Students and Professors [Chavira et al.,

2006], and tcc4f, and

• non-binary classic Bayesian networks (176 instances) (alarm, diabetes, hailfinder,

mildew, munin1–4, pathfinder, pigs, water).

Figure 3.2 shows that cd05 [Chavira and Darwiche, 2005] and cd06 [Chavira and

Darwiche, 2006] (when run with ACE) are in the lead, while ADDMC [Dudek et al.,

2020a] significantly underperforms when combined with any of the previous encod-

ings. Our encoding cw significantly improves the performance of ADDMC, making

ADDMC+cw comparable to ACE+d02, C2D+bklm16, and CACHET+sbk05. Fur-

thermore, Table 3.2 shows that, while ACE+cd06 managed to solve the most instances,

ADDMC+cw was the best-performing algorithm-encoding combination on the largest

number of instances. The scatter plot on the left-hand side of Figure 3.3 add to this

by showing that cw is particularly promising on Grid networks and tackles all DQMR

instances in less than a second. The scatter plot on the right-hand side of Figure 3.3

shows that cw is better than sbk05 [Sang et al., 2005a] (i.e., the second-best encoding

for ADDMC) on the majority of instances. Seeing how, e.g., DQMR instances are
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Figure 3.2: Cumulative numbers of instances solved by combinations of algorithms and

encodings over time.

trivial for ADDMC+cw but hard for ACE+cd06, and vice versa for Mastermind in-

stances, we conclude that the best-performing algorithm-encoding combination depends

significantly on (as-of-yet unknown) properties of the Bayesian networks.

We provide two plausible explanations for why ADDMC [Dudek et al., 2020a]

runs significantly faster with cw than with any other encoding. First, we note that

data sets on which ADDMC+cw significantly outperformed the state of the art have

many CPTs with all probabilities set to either zero or one. Perhaps such determinism

as well as other aspects of local structure such as parameter equality and context-

specific independence [Boutilier et al., 1996, Vlasselaer et al., 2016b] become easier for

ADDMC to detect given the less-obfuscated cw input format. Second, we can establish

asymptotic upper bounds on the numbers of variables and ADDs based on the size and

structure of the Bayesian network. Let n = |V | be the number of nodes in the Bayesian

network, d = maxX∈V |pa(X)| the maximum in-degree (i.e., the number of parents), and

v = maxX∈V | ImX | the maximum number of values per variable. Table 3.3 shows how

cw has asymptotically fewer variables than any other encoding. We conjecture that it is

primarily the reduced number of variables that makes the ADDMC variable ordering

heuristics more effective. To begin with, ADDs that rely on fewer variables can be

significantly smaller, thus providing a boost to the algorithm’s performance. Moreover,

classical WMC encodings have variables whose only purpose is to hold a weight and be

associated (e.g., via⇔) with another variable, i.e., parameter variables (see Chapter 4
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Algorithm & Encoding Unique Fastest Total

ACE+cd05 0 55 1169

ACE+cd06 34 218 1259
ACE+d02 0 46 993

ADDMC+bklm16 0 29 617

ADDMC+cw 14 770 919

ADDMC+d02 0 0 703

ADDMC+sbk05 0 0 729

C2D+bklm16 0 3 1017

CACHET+sbk05 13 229 928

Table 3.2: The numbers of instances (out of 1466) solved by each combination of

algorithm and encoding (uniquely, faster than others, and in total).

Encoding(s) Variables Clauses ADDs

bklm16, cd05, cd06, sbk05 O(nvd+1) O(nvd+1)

cw O(nv) O(nv2)

d02 O(nvd+1) O(ndvd+1)

Table 3.3: Asymptotic upper bounds on the numbers of variables and clauses/ADDs

for each encoding. Note that most encodings (including cw) can be smaller in certain

situations (e.g., with binary random variables or when a CPT has repeating probabilities).

for more details). Heuristics used by ADDMC such as maximum cardinality search

[Tarjan and Yannakakis, 1984] and lexicographic search for perfect orders [Rose et al.,

1976] are likely to put such variables one after another. However, in some cases it might

be better to keep them close to the variables they are associated with.

Table 3.3 also shows that cw has asymptotically fewer ADDs than any WMC

encoding has clauses unless each node of the Bayesian network has at most one parent.

Clauses and ADDs (more specifically, factors of the function φ from Algorithm 3.1) are

somewhat comparable since ADDMC interprets each clause of any WMC encoding

as a multiplicative factor of the ADD that represents the entire WMC instance [Dudek

et al., 2020a]. For literal-weight encodings, each weight is also a factor, but that does

not affect our asymptotic bounds.
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Figure 3.3: An instance-by-instance comparison between ADDMC+cw and the best

overall combination of algorithm and encoding (ACE+cd06, on the left) as well as the

second-best encoding for ADDMC (sbk05, on the right).

3.7 Conclusions and Future Work

WMC was originally motivated by an appeal to the success of SAT solvers in efficiently

tackling an NP-complete problem [Sang et al., 2005a]. ADDMC does not rely on

SAT-based algorithmic techniques [Dudek et al., 2020a], and our proposed format

diverges even more from the DIMACS CNF format for propositional formulas. To what

extent are SAT-based methods still applicable? The answer depends significantly on the

problem domain. For Bayesian networks, the rules describing that each random variable

can only be associated with exactly one value were still encoded as clauses. As has

been noted previously [Chavira and Darwiche, 2006], rows in CPTs with probabilities

equal to zero or one can be represented as clauses as well. Therefore, our work can be

seen as proposing a middle ground between #SAT and probabilistic inference.

While we chose ADDMC [Dudek et al., 2020a] as the WMC algorithm and

Bayesian networks as a canonical example of a probabilistic inference task, these

are only examples meant to illustrate the broader idea that choosing a more expressive

representation of weights can outperform increasing the size of the problem to keep the

weights simple. Indeed, in this work, we have provided a new theoretical perspective on

the expressive power of WMC and illustrated the empirical benefits of that perspective.

Perhaps the same idea could be adapted to other inference problem domains such
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as probabilistic programs [Fierens et al., 2015, Holtzen et al., 2020a] as well as to

search-based solvers such as CACHET [Sang et al., 2004].

Chapter 4 continues to develop the perspective on WMC initiated in this chapter.

There, we present a generalisation of WMC based on pseudo-Boolean functions. Sup-

port for the new format is then implemented for DPMC—an extension to ADDMC

capable of performing computations using tensors (rather than ADDs) and planning

using tree decompositions [Dudek et al., 2020b].



Chapter 4

WMC Without Parameter Variables

4.1 Introduction

Recall that in Chapter 3 we examined WMC from a measure-theoretic perspective and

found that—due to the rigidity of the standard formulation—WMC encodings usually

contain many superfluous variables. This observation inspired an encoding for Bayesian

networks that alleviates the issue. In this chapter, we continue to tackle the subject of

superfluous parameter variables but take the solution a few steps further.

If WMC is not the right format for probabilistic inference and other sum-of-products

computations, what could be a better alternative? As many WMC inference algorithms

[Darwiche, 2004, Oztok and Darwiche, 2015] work by compilation to tractable repres-

entations such as arithmetic circuits, deterministic, decomposable negation normal form

[Darwiche, 2001b], and sentential decision diagrams (SDDs) [Darwiche, 2011], per-

haps parameter variables could be avoided via direct compilation to a more convenient

representation. Direct compilation of Bayesian networks to SDDs [Choi et al., 2013]

and probabilistic SDDs [Shen et al., 2016] have been investigated. However, SDDs only

support weights on literals, and so are not expressive enough to avoid the issue. Gogate

and Domingos [2010] propose a format based on weighted clauses and probabilistic

semantics inspired by Markov networks. However, with a new representation comes the

need to invent new encodings and inference algorithms. Moreover, to the best of our

knowledge, none of these approaches [Choi et al., 2013, Gogate and Domingos, 2010,

Shen et al., 2016] has a publicly available implementation.

In this work, we introduce a new computational problem called pseudo-Boolean

projection (PBP)—a generalisation of the conditional weights approach proposed in

Chapter 3. Recent WMC algorithms based on pseudo-Boolean function manipulation—

51
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namely, ADDMC [Dudek et al., 2020a] and DPMC [Dudek et al., 2020b]—can easily

be adapted to the new format. In contrast to our previous work, instead of inventing

new encodings, we show how every WMC problem instance can be transformed to

PBP and identify conditions under which this transformation can remove parameter

variables. Four out of the five known WMC encodings for Bayesian networks [Bart

et al., 2016, Chavira and Darwiche, 2005, 2006, Darwiche, 2002, Sang et al., 2005a]

can indeed be simplified in this manner. We are able to eliminate 43 % of variables on

average and up to 99 % on some instances. This transformation enables two encodings

that were previously incompatible with most WMC algorithms (due to using a different

formulation of WMC [Chavira and Darwiche, 2005, 2006]) to be run with ADDMC and

DPMC and results in a significant performance boost for one other encoding, making it

about three times faster than the state of the art. Finally, our theoretical contributions

result in a convenient algebraic way of reasoning about two-valued pseudo-Boolean

functions and position WMC encodings on common ground, identifying their key

properties and assumptions.

4.2 Redefining WMC

Since the goal of this chapter is to generalise WMC in a way that eliminates the

redundant parameter variables, in this section we redefine WMC in a way that explicitly

partitions all variables into parameter and indicator variables. We also formalise a

variant of WMC that has been implicitly used by Chavira and Darwiche [2005, 2006].

In this chapter, we denote interpretations (and models) of a propositional formula as

subsets of the set of variables. These variables are implicitly mapped to true whereas all

other variables are mapped to false. The cardinality of a model is then the cardinality

of this set.

Example 4.1. Let φ = (¬a∨b)∧a be a propositional formula over variables a and b.

Then {a,b} (i.e., {a 7→ true,b 7→ true}) is a model of φ (written {a,b} |= φ), and it

has cardinality two.

Definition 4.1 (WMC). A WMC instance is a tuple (φ,XI,XP,w), where XI is the set

of indicator variables, XP is the set of parameter variables (with XI ∩XP = /0), φ is a

propositional formula in CNF over XI∪XP, and w : XI∪XP∪{¬x | x ∈ XI∪XP }→R is

a weight function such that w(x) = w(¬x) = 1 for all x ∈ XI . The answer of the instance

is ∑Y |=φ ∏Y |=l w(l).
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In practice, we identify this partition of variables in one of two ways. If an encoding

is generated by ACE1, then variable types are explicitly identified in a file generated

alongside the encoding. Otherwise, we take XI to be the set of all variables x such that

w(x) = w(¬x) = 1. Next, we formally define another variant of WMC.

Definition 4.2. Let φ be a formula over a set of variables X . Then Y ⊆ X is a minimum-

cardinality model of φ if Y |= φ and |Y | ≤ |Z| for all Z |= φ.

Definition 4.3 (Minimum-cardinality WMC). A minimum-cardinality WMC instance

consists of the same tuple as a WMC instance, but its answer is defined to be

∑
Y |=φ,|Y |=k

∏
Y |=l

w(l)

(where k = minY |=φ |Y |) if φ is satisfiable, and zero otherwise.

Example 4.2. Let φ = (x∨ y)∧ (¬x∨¬y)∧ (¬x∨ p)∧ (¬y∨q)∧ x, XI = {x,y}, XP =

{ p,q}, w(p) = 0.2, w(q) = 0.8, and w(¬p) = w(¬q) = 1. Then φ has two models:

{x, p} and {x, p,q} with weights 0.2 and 0.2×0.8 = 0.16, respectively. The WMC

answer is then 0.2+0.16 = 0.36, and the minimum-cardinality WMC answer is 0.2.

4.3 Bayesian Network Encodings

Recall that a Bayesian network is a directed acyclic graph with random variables as

nodes and edges as conditional dependencies. As is common in related literature

[Darwiche, 2002, Sang et al., 2005a], we assume that each variable has a finite number

of values. We call a Bayesian network binary if every variable has two values.

WMC is a well-established technique for Bayesian network inference, particularly

effective on networks where most variables have only a few possible values [Darwiche,

2002]. Many ways of encoding a Bayesian network into a WMC instance have been

proposed. Darwiche [2002] was the first to suggest the d02 encoding that, in many ways,

remains the foundation behind most other encodings. He also introduced the distinction

between indicator and parameter variables; the former represent variable-value pairs in

the Bayesian network, while the latter are associated with probabilities in the conditional

probability tables (CPTs). The encoding sbk05 [Sang et al., 2005a] is the only encoding

that deviates from this arrangement: for each variable in the Bayesian network, one

1ACE [Chavira and Darwiche, 2008] implements most of the Bayesian network encodings and can also
be used for compilation (and thus inference). It is available at http://reasoning.cs.ucla.edu/ace/.

http://reasoning.cs.ucla.edu/ace/
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indicator variable acts simultaneously as a parameter variable. Chavira and Darwiche

[2005] propose cd05 where they shift from WMC to minimum-cardinality WMC

because that allows the encoding to have fewer variables and clauses. In particular,

they propose a way to use the same parameter variable to represent all probabilities

in a CPT that are equal and keep only clauses that ‘imply’ parameter variables (i.e.,

omit clauses where a parameter variable implies indicator variables).2 In their next

encoding, cd06, Chavira and Darwiche [2006] optimise the aforementioned implication

clauses, choosing the smallest sufficient selection of indicator variables. A decade later,

Bart et al. [2016] present bklm16 that improves upon cd06 in two ways. First, they

optimise the number of indicator variables used per Bayesian network variable from a

linear to a logarithmic amount. Second, they introduce a scaling factor that can ‘absorb’

one probability per Bayesian network variable. However, for this work, we choose

to disable the latter improvement since this scaling factor is often small enough to be

indistinguishable from zero without the use of arbitrary precision arithmetic, making

it completely unusable on realistic instances. Indeed, the reader is free to check that

even a small Bayesian network with seven mutually independent binary variables, 0.1

and 0.9 probabilities each, is already big enough for the scaling factor to be exactly

equal to zero (as produced by the bklm16 encoder3). We suspect that this issue was not

identified during the original set of experiments because the authors never looked at

numerical answers.

Example 4.3. Let B be a Bayesian network with one variable X which has two values x1

and x2 with probabilities Pr(X = x1) = 0.2 and Pr(X = x2) = 0.8. Let x,y be indicator

variables, and p,q be parameter variables. Then Example 4.2 is both the cd05 and the

cd06 encoding of B . The bklm16 encoding is (x⇒ p)∧ (¬x⇒ q)∧ x with w(p) =

w(¬q) = 0.2, and w(¬p) = w(q) = 0.8. And the d02 encoding is (¬x⇒ p)∧ (p⇒
¬x)∧ (x⇒ q)∧ (q⇒ x)∧¬x with w(p) = 0.2, w(q) = 0.8, and w(¬p) = w(¬q) = 1.

Note how all other encodings have fewer clauses than d02. While cd05 and cd06

require minimum-cardinality WMC to make this work, bklm16 achieves the same thing

by adjusting weights.4

2Example 4.3 demonstrates what we mean by implication clauses.
3http://www.cril.univ-artois.fr/kc/bn2cnf.html
4Note that since cd05 and cd06 are minimum-cardinality WMC encodings, they are not supported by

most WMC algorithms.

http://www.cril.univ-artois.fr/kc/bn2cnf.html
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4.4 Pseudo-Boolean Functions

In this work, we propose a more expressive representation for WMC based on pseudo-

Boolean functions. Since two-valued pseudo-Boolean functions will be used extensively

henceforth, we introduce some new notation. For any propositional formula φ over a set

of variables X and p,q ∈ R, let [φ]pq : 2X → R be the pseudo-Boolean function defined

as

[φ]pq(Y ) :=

p if Y |= φ

q otherwise

for any Y ⊆ X .

Below we list some properties of the operations on pseudo-Boolean functions that

can be conveniently represented using our syntax. The proofs of all these properties

follow directly from the definitions.

Proposition 4.1 (Basic properties). For any propositional formulas φ and ψ, and

a,b,c,d ∈ R,

• [φ]ab = [¬φ]ba ;

• c+[φ]ab = [φ]a+c
b+c ;

• c · [φ]ab = [φ]ac
bc ;

• [φ]ab · [φ]
c
d = [φ]ac

bd ;

• [φ]10 · [ψ]
1
0 = [φ∧ψ]10 .

And for any pair of pseudo-Boolean functions f ,g : 2X → R and x ∈ X, ( f g)|x=i =

f |x=i ·g|x=i for i = 0,1.

Remark. For convenience, we assume that the domain of a pseudo-Boolean function

f shrinks whenever f is independent of some of the variables (i.e., f |x=0 = f |x=1)

and expand for binary operations to make the domains of both functions equal. For

instance, let [x]10, [¬x]10 : 2{x}→ R and [y]10 : 2{y}→ R be pseudo-Boolean functions.

Then [x]10 · [¬x]10 has 2 /0 as its domain. To multiply [x]10 and [y]10, we expand [x]10 into(
[x]10
)′

: 2{x,y}→R which is defined as
(
[x]10
)′
(Z) := [x]10(Z∩{x}) for all Z ⊆ {x,y}

(and equivalently for [y]10).
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4.5 Pseudo-Boolean Projection

We introduce a new type of computational problem called pseudo-Boolean projection

based on two-valued pseudo-Boolean functions. While the same computational frame-

work can handle any pseudo-Boolean functions, two-valued functions are particularly

convenient because DPMC [Dudek et al., 2020b] can be easily adapted to use them as

input. Since we will only encounter functions of the form [φ]ab, where φ is a conjunction

of literals, we can represent it in text as w ⟨φ⟩ a b where ⟨φ⟩ is a representation of φ

analogous to the representation of a clause in the DIMACS CNF format.

Definition 4.4 (PBP instance). A PBP instance is a tuple (F,X ,ω), where X is the set

of variables, F is a set of two-valued pseudo-Boolean functions 2X → R, and ω ∈ R is

the scaling factor.5 Its answer is ω ·
(
∃X ∏ f∈F f

)
( /0).

4.5.1 From WMC to PBP

In this section, we describe an algorithm for transforming WMC instances to the PBP

format while removing all parameter variables. We chose to transform existing encod-

ings instead of creating a new one to reuse already-existing techniques for encoding each

CPT to its minimal logical representation such as prime implicants and limited forms of

resolution [Bart et al., 2016, Chavira and Darwiche, 2005, 2006]. The transformation

algorithm works on four out of the five Bayesian network encodings: bklm16 [Bart

et al., 2016], cd05 [Chavira and Darwiche, 2005], cd06 [Chavira and Darwiche, 2006],

and d02 [Darwiche, 2002]. There is no obvious way to adjust it to work with sbk05

because the roles of indicator and parameter variables overlap [Sang et al., 2005a].

The algorithm is based on several observations that will be made more precise in

Section 4.5.2. First, all weights except for {w(p) | p ∈ XP } are redundant as they either

duplicate an already-defined weight or are equal to one. Second, each clause has at

most one parameter variable. Third, if the parameter variable is negated, we can ignore

the clause (this idea comes from the work of Chavira and Darwiche [2005]). Note

that while we formulate our algorithm as a sequel to the WMC encoding procedure

primarily because the implementations of Bayesian network WMC encodings are all

closed-source, as all transformations in the algorithm are local, it can be efficiently

incorporated into a WMC encoding algorithm with no slowdown.

5Adding scaling factor ω to the definition allows us to remove clauses that consist entirely of a single
parameter variable. The idea of extracting some of the structure of the WMC instance into an external
multiplicative factor was loosely inspired by the bklm16 encoding, where it is used to subsume the most
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Algorithm 4.1: WMC to PBP transformation.
Input: WMC (or minimum-cardinality WMC) instance (φ,XI,XP,w)

Output: PBP instance (F,XI,ω)

1 F ← /0;

2 ω← 1;

3 foreach clause c ∈ φ do
4 if c∩XP = { p} for some variable p and w(p) ̸= 1 then
5 if |c|= 1 then ω← ω×w(p);

6 else F ← F ∪
{[∧

l∈c\{ p}¬l
]w(p)

1

}
;

7 else if { p | ¬p ∈ c}∩XP = /0 then
8 F ← F ∪{ [c]10 };

9 foreach variable v ∈ XI such that { [v]p1 , [¬v]q1 } ⊆ F for some p and q do
10 F ← F \{ [v]p1 , [¬v]q1 }∪{ [v]

p
q };

The algorithm is listed as Algorithm 4.1. The main part of the algorithm is the

first loop that iterates over clauses. If a clause consists of a single parameter variable,

we incorporate it into ω. If a clause is of the form α⇒ p, where p ∈ XP, and α is a

conjunction of literals over XI , we transform it into a pseudo-Boolean function [α]
w(p)
1 .

If a clause c ∈ φ has no parameter variables, we reformulate it into a pseudo-Boolean

function [c]10. Finally, clauses with negative parameter literals are omitted.

As all ‘weighted’ pseudo-Boolean functions produced by the first loop are of the

form [α]
p
1 (for some p ∈ R and formula α), the second loop merges two functions into

one whenever α is a literal. Note that taking into account the order in which clauses are

typically generated by encoding algorithms allows us to do this in linear time (i.e., the

two mergeable functions will be generated one after the other).

4.5.2 Correctness Proofs

In this section, we outline key conditions that a (WMC or minimum-cardinality WMC)

encoding has to satisfy for Algorithm 4.1 to output an equivalent PBP instance. We

divide the correctness proof into two theorems: Theorem 4.2 for WMC encodings (i.e.,

bklm16 and d02) and Theorem 4.3 for minimum-cardinality WMC encodings (i.e.,

cd05 and cd06). We begin by listing some properties of pseudo-Boolean functions and

commonly occurring probability of each CPT [Bart et al., 2016].
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establishing a canonical transformation from WMC to PBP.

Theorem 4.1 (Early projection [Dudek et al., 2020a,b]). Let X and Y be sets of variables.

For all pseudo-Boolean functions f : 2X → R and g : 2Y → R, if x ∈ X \Y , then ∃x( f ·
g) = (∃x f ) ·g.

Lemma 4.1. For any pseudo-Boolean function f : 2X → R, we have that (∃X f )( /0) =

∑Y⊆X f (Y ).

Proof. If X = {x}, then

(∃x f )( /0) = ( f |x=1 + f |x=0)( /0) = f |x=1( /0)+ f |x=0( /0) = ∑
Y⊆{x}

f (Y ).

This easily extends to |X |> 1 by the definition of projection on sets of variables.

Proposition 4.2. Let (φ,XI,XP,w) be a WMC instance. Then({
[c]10

∣∣∣ c ∈ φ

}
∪
{
[x]w(x)w(¬x)

∣∣∣ x ∈ XI ∪XP

}
,XI ∪XP,1

)
(4.1)

is a PBP instance with the same answer (as in Definitions 4.1 and 4.4).

Proof. Let f = ∏c∈φ [c]
1
0, and g = ∏x∈XI∪XP [x]

w(x)
w(¬x). Then the WMC answer of Equa-

tion (4.1) is (∃XI∪XP f g)( /0) = ∑Y⊆XI∪XP( f g)(Y ) = ∑Y⊆XI∪XP f (Y )g(Y ) by Lemma 4.1.

Note that

f (Y ) =

1 if Y |= φ,

0 otherwise,
and g(Y ) = ∏

Y |=l
w(l),

which means that ∑Y⊆XI∪XP f (Y )g(Y ) = ∑Y |=φ ∏Y |=l w(l) as required.

Theorem 4.2 (Correctness for WMC). Algorithm 4.1, when given a WMC instance

(φ,XI,XP,w), returns a PBP instance with the same answer (as defined in Definitions 4.1

and 4.4), provided either of the two conditions is satisfied:

1. for all p ∈ XP, there is a non-empty family of literals (li)
n
i=1 such that

(a) w(¬p) = 1,

(b) li ∈ XI or ¬li ∈ XI for all i = 1, . . . ,n,

(c) and {c ∈ φ | p ∈ c or ¬p ∈ c}= { p∨
∨n

i=1¬li }∪{ li∨¬p | i = 1, . . . ,n};

2. or for all p ∈ XP,

(a) w(p)+w(¬p) = 1,
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(b) for any clause c ∈ φ, |c∩XP| ≤ 1,

(c) there is no clause c ∈ φ such that ¬p ∈ c,

(d) if { p} ∈ φ, then there is no clause c ∈ φ such that c ̸= { p} and p ∈ c,

(e) and for any c,d ∈ φ such that c ̸= d, p ∈ c and p ∈ d,
∧

l∈c\{ p}¬l ∧∧
l∈d\{ p}¬l is false.

Condition 1 (for d02) simply states that each parameter variable is equivalent to a

conjunction of indicator literals. Condition 2 is for encodings that have implications

rather than equivalences associated with parameter variables (which, in this case, is

bklm16). It ensures that each clause has at most one positive parameter literal and

no negative ones, and that at most one implication clause per any parameter variable

p ∈ XP can ‘force p to be positive’.

Proof. By Proposition 4.2,({
[c]10

∣∣∣ c ∈ φ

}
∪
{
[x]w(x)w(¬x)

∣∣∣ x ∈ XI ∪XP

}
,XI ∪XP,1

)
(4.2)

is a PBP instance with the same answer as the given WMC instance. By Defini-

tion 4.4, its answer is
(
∃XI∪XP

(
∏c∈φ [c]

1
0

)
∏x∈XI∪XP [x]

w(x)
w(¬x)

)
( /0). Since both Condi-

tions 1 and 2 ensure that each clause in φ has at most one parameter variable, we can

partition φ into φ∗ := {c ∈ φ | Vars(c)∩XP = /0} and φp := {c ∈ φ | Vars(c)∩XP =

{ p}} for all p ∈ XP. We can then use Theorem 4.1 to reorder the answer into(
∃XI

(
∏x∈XI [x]

w(x)
w(¬x)

)(
∏c∈φ∗ [c]

1
0

)
∏p∈XP ∃p[p]

w(p)
w(¬p)∏c∈φp [c]

1
0

)
( /0).

Let us first consider how the unfinished WMC instance (F,XI,ω) after the loop

on lines 3–8 differs from Equation (4.2). Note that Algorithm 4.1 leaves each c ∈ φ∗

unchanged, i.e., adds [c]10 to F . We can then fix an arbitrary p ∈ XP and let Fp be the set

of functions added to F as a replacement of φp. It is sufficient to show that

ω ∏
f∈Fp

f = ∃p[p]
w(p)
w(¬p) ∏

c∈φp

[c]10. (4.3)

Note that under Condition 1,
∧

c∈φp
c≡ p⇔

∧n
i=1 li for some family of indicator variable

literals (li)
n
i=1. Thus, ∃p[p]

w(p)
w(¬p)∏c∈φp [c]

1
0 = ∃p[p]

w(p)
1 [p⇔

∧n
i=1 li]

1
0. If w(p) = 1, then

∃p[p]
w(p)
1

[
p⇔

n∧
i=1

li

]1

0

=

[
p⇔

n∧
i=1

li

]1

0

∣∣∣∣∣∣
p=1

+

[
p⇔

n∧
i=1

li

]1

0

∣∣∣∣∣∣
p=0

. (4.4)
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Since for any input,
∧n

i=1 li is either true or false, exactly one of the two summands in

Equation (4.4) will be equal to one, and the other will be equal to zero, and so[
p⇔

n∧
i=1

li

]1

0

∣∣∣∣∣∣
p=1

+

[
p⇔

n∧
i=1

li

]1

0

∣∣∣∣∣∣
p=0

= 1,

where 1 is a pseudo-Boolean function that always returns one. On the other side

of Equation (4.3), since Fp = /0, and ω is unchanged, we get ω∏ f∈Fp f = 1, and so

Equation (4.3) is satisfied under Condition 1 when w(p) = 1.

If w(p) ̸= 1, then Fp =
{
[
∧n

i=1 li]
w(p)
1

}
, and ω = 1, and so we want to show that

[
∧n

i=1 li]
w(p)
1 = ∃p[p]

w(p)
1 [p⇔

∧n
i=1 li]

1
0. Indeed,

∃p[p]
w(p)
1

[
p⇔

n∧
i=1

li

]1

0

= w(p) ·

[
n∧

i=1

li

]1

0

+

[
n∧

i=1

li

]0

1

=

[
n∧

i=1

li

]w(p)

1

.

This finishes the proof of the correctness of the first loop under Condition 1.

Now let us assume Condition 2. We still want to prove Equation (4.3). If w(p) = 1,

then Fp = /0, and ω = 1, and so the left-hand side of Equation (4.3) is equal to one. Then

the right-hand side is ∃p[p]
1
0 ∏c∈φp [c]

1
0 = ∃p

[
p∧

∧
c∈φp

c
]1

0
= ∃p[p]

1
0 = 0+1 = 1 since

p ∈ c for every clause c ∈ φp.

If w(p) ̸= 1, and { p} ∈ φp, then, by Condition 2d, φp = {{ p}}, and Algorithm 4.1

produces Fp = /0, and ω=w(p), and so ∃p[p]
w(p)
w(¬p)[p]

1
0 = ∃p[p]

w(p)
0 =w(p)=ω∏ f∈Fp f .

The only remaining case is when w(p) ̸= 1 and { p} ̸∈ φp. Then ω = 1, and Fp ={[∧
l∈c\{ p}¬l

]w(p)

1

∣∣∣∣ c ∈ φp

}
, so we need to show that

∏
c∈φp

 ∧
l∈c\{ p}

¬l

w(p)

1

= ∃p[p]
w(p)
1−w(p) ∏

c∈φp

[c]10.

We can rearrange the right-hand side as

∃p[p]
w(p)
1−w(p) ∏

c∈φp

[c]10 = ∃p[p]
w(p)
1−w(p)

p∨
∧

c∈φp

c\{ p}

1

0

= w(p)+(1−w(p))

∧
c∈φp

c\{ p}

1

0

=

∧
c∈φp

c\{ p}

1

w(p)

=

∨
c∈φp

∧
l∈c\{ p}

¬l

w(p)

1

.
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By Condition 2e,
∧

l∈c\{ p}¬l can be true for at most one c ∈ φp, and so∨
c∈φp

∧
l∈c\{ p}

¬l

w(p)

1

= ∏
c∈φp

 ∧
l∈c\{ p}

¬l

w(p)

1

which is exactly what we needed to show. This ends the proof that the first loop of

Algorithm 4.1 preserves the answer under both Condition 1 and Condition 2. Finally,

the loop on lines 9–10 of Algorithm 4.1 replaces [v]p1 [¬v]q1 with [v]pq (for some v∈ XI and

p,q ∈ R), but, of course, [v]p1 [¬v]q1 = [v]p1 [v]
1
q = [v]pq , i.e., the answer is unchanged.

Theorem 4.3 (Minimum-cardinality correctness). Let (φ,XI,XP,w) be a minimum-

cardinality WMC instance that satisfies Conditions 2b–2e of Theorem 4.2 as well as the

following:

1. for all parameter variables p ∈ XP, w(¬p) = 1.

2. all models of {c ∈ φ | c∩XP = /0} (as subsets of XI) have the same cardinality;

3. minZ⊆XP |Z| such that Y ∪Z |= φ is the same for all Y |= {c ∈ φ | c∩XP = /0}.

Then Algorithm 4.1, when applied to (φ,XI,XP,w), outputs a PBP instance with the

same answer (as defined in Definitions 4.3 and 4.4).

In this case, we have to add some assumptions about the cardinality of models.

Condition 2 states that all models of the indicator-only part of the formula have the

same cardinality. Bayesian network encodings such as cd05 and cd06 satisfy this

condition by assigning an indicator variable to each possible variable-value pair and

requiring each random variable to be paired with exactly one value. Condition 3 then

says that the smallest number of parameter variables needed to turn an indicator-only

model into a full model is the same for all indicator-only models. As some ideas

duplicate between the proofs of Theorems 4.2 and 4.3, the following proof is slightly

less explicit and assumes that ω = 1.

Proof. Let (F,XI,ω) be the tuple returned by Algorithm 4.1 and note that

F =
{
[c]10 | c ∈ φ, c∩XP = /0

}
∪


 ∧

l∈c\{ p}
¬l

w(p)

1

∣∣∣∣∣∣∣ p ∈ XP, p ∈ c ∈ φ, c ̸= { p}

 .

We split the proof into two parts. In the first part, we show that there is a bijection

between minimum-cardinality models of φ and Y ⊆ XI such that
(
∏ f∈F f

)
(Y ) ̸= 0.6

6For convenience and without loss of generality we assume that w(p) ̸= 0 for all p ∈ XP.
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Let Y ⊆ XI and Z ⊆ XI ∪XP be related via this bijection. Then in the second part we

will show that

∏
Z|=l

w(l) =

(
∏
f∈F

f

)
(Y ). (4.5)

On the one hand, if Z ⊆ XI ∪XP is a minimum-cardinality model of φ, then(
∏
f∈F

)
(Z∩XI) ̸= 0

under the given assumptions. On the other hand, if Y ⊆ XI is such that
(
∏ f∈F

)
(Y ) ̸= 0,

then Y |= {c ∈ φ | c∩XP = /0}. Let Y ⊆ Z ⊆ XI ∪XP be the smallest superset of Y

such that Z |= φ (it exists by Condition 2c of Theorem 4.2). We need to show that Z

has minimum cardinality. Let Y ′ and Z′ be defined equivalently to Y and Z. We will

show that |Z| = |Z′|. Note that |Y | = |Y ′| by Condition 2, and |Z \Y | = |Z′ \Y ′| by

Condition 3. Combining that with the general property that |Z|= |Y |+ |Z \Y | finishes

the first part of the proof.

For the second part, let us consider the multiplicative influence of a single parameter

variable p∈XP on Equation (4.5). If the left-hand side is multiplied by w(p) (i.e., p∈ Z),

then there must be some clause c ∈ φ such that Z \{ p} ̸|= c. But then Y |=
∧

l∈c\{ p}¬l,

and so the right-hand side is multiplied by w(p) as well (exactly once because of

Condition 2e of Theorem 4.2). This argument works in the other direction as well.

4.6 Experimental Evaluation

We run a set of experiments, comparing all five original Bayesian network encodings

(bklm16, cd05, cd06, d02, sbk05) as well as the first four with Algorithm 4.1 applied

afterwards.7 For each encoding e, we write e++ to denote the combination of encoding

a Bayesian network as a WMC instance using e and transforming it into a PBP instance

using Algorithm 4.1. Along with DPMC8, we also include WMC algorithms used

in the papers that introduce each encoding: ACE for cd05, cd06, and d02; CACHET9

[Sang et al., 2004] for sbk05; and C2D10 [Darwiche, 2004] with QUERY-DNNF11 for

bklm16. ACE is also used to encode Bayesian networks into WMC instances for all

7Recall that cd05 and cd06 are incompatible with DPMC.
8https://github.com/vardigroup/DPMC
9https://henrykautz.com/Cachet/index.htm

10http://reasoning.cs.ucla.edu/c2d/
11http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html

https://github.com/vardigroup/DPMC
https://henrykautz.com/Cachet/index.htm
http://reasoning.cs.ucla.edu/c2d/
http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
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encodings except for bklm16 which uses another encoder mentioned previously. We

focus on the following questions:

• Can parameter variable elimination improve inference speed?

• How does DPMC combined with encodings without (and with) parameter vari-

ables compare with other WMC algorithms and other encodings?

• Which instances is our approach particularly successful on (compared to other

algorithms and encodings and to the same encoding before our transformation)?

• What proportion of variables is typically eliminated?

• Do some encodings benefit from this transformation more than others?

4.6.1 Setup

DPMC is run with tree decomposition-based planning and ADD-based execution—the

best-performing combination in the original set of experiments [Dudek et al., 2020b].

We use a single iteration of HTD [Abseher et al., 2017] to generate approximately

optimal tree decompositions—we found that this configuration is efficient enough to

handle huge instances, and yet the width of the returned decomposition is unlikely to

differ from optimal by more than one or two. We also enabled DPMC’s greedy mode.

This mode (which was not part of the original paper [Dudek et al., 2020b]) optimises

the order in which ADDs are multiplied by prioritising those with small representations.

The experimental data and the protocol for choosing which probability to compute

are as in Chapter 3. The experiments were run on a computing cluster with Intel Xeon

E5-2630, Intel Xeon E7-4820, and Intel Xeon Gold 6138 processors with a 1000 s

timeout separately on both encoding and inference, and a 32 GiB memory limit.12

4.6.2 Results

Figure 4.1 shows DPMC+bklm16++ to be the best-performing combination across all

time limits up to 1000 s with ACE+cd06 and DPMC+bklm16 not far behind. Overall,

DPMC+bklm16++ is 3.35 times faster than DPMC+bklm16 and 2.96 times faster

than ACE + cd06. Table 4.1 further shows that DPMC+ bklm16++ solves almost a

12Each instance was run on the same processor across all algorithms and encodings.
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Figure 4.1: Cactus plot of all algorithm-encoding pairs. The dotted line denotes the total

number of instances used.

hundred more instances than any other combination, and is the fastest in 69.1 % of

them.

The scatter plots in Figure 4.2 show that how DPMC+ bklm16++ (and perhaps

DPMC more generally) compares to ACE+cd06 depends significantly on the data set:

the former is a clear winner on DQMR and Grid instances, while the latter performs well

on Mastermind and Random Blocks. Perhaps because the underlying WMC algorithm

remains the same, the difference between DPMC+bklm16 with and without applying

Algorithm 4.1 is quite noisy, i.e, with most instances scattered around the line of equality.

However, our transformation does enable DPMC to solve many instances that were

previously beyond its reach.

We also record numbers of variables in each encoding before and after applying

Algorithm 4.1. Figure 4.3 shows a significant reduction in the number of variables.

For instance, the median number of variables in instances encoded with bklm16 was

reduced four times: from 1499 to 376. While bklm16++ results in the overall lowest

number of variables, the difference between bklm16++ and d02++ seems small. Indeed,

the numbers of variables in these two encodings are equal for binary Bayesian networks

(i.e., most of our data). Nonetheless, bklm16++ is still much faster than d02++ when

run with DPMC.

It is also worth noting that there was no observable difference in the width of the

project-join tree used by DPMC (which is equivalent to the primal treewidth of the
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Figure 4.2: An instance-by-instance comparison between DPMC + bklm16++ (the

best combination according to Figure 4.1) and the second and third best-performing

combinations: ACE+cd06 and DPMC+bklm16.

input formula [Dudek et al., 2020b]) before and after applying Algorithm 4.1. Hence,

the observed performance improvement is more likely due to ADDs being smaller as a

result of there being fewer variables.13

Overall, transforming WMC instances to the PBP format allows us to significantly

simplify each instance. This transformation is particularly effective on bklm16, allowing

it to surpass cd06 and become the new state of the art. While there is a similarly

significant reduction in the number of variables for d02, the performance of DPMC+

d02 is virtually unaffected. Finally, while our transformation makes it possible to use

cd05 and cd06 with DPMC, the two combinations remain inefficient.

4.7 Conclusion and Future Work

In this chapter, we showed how the number of variables in a WMC instance can be

significantly reduced by transforming it into a representation based on two-valued

pseudo-Boolean functions. In some cases, this led to significant improvements in

inference speed, allowing DPMC + bklm16++ to overtake ACE + cd06 as the new

state of the art WMC technique for Bayesian network inference. Incidentally, the

13The data on this (along with the implementation of Algorithm 4.1) is available at https://github.
com/dilkas/wmc-without-parameters.

https://github.com/dilkas/wmc-without-parameters
https://github.com/dilkas/wmc-without-parameters
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Figure 4.3: Box plots of the numbers of variables in each encoding across all benchmark

instances before and after applying Algorithm 4.1. Outliers and the top parts of some

whiskers are omitted.

new format could be used (without any major changes) by the approximate WMC

algorithm and the distribution-aware sampler by Chakraborty et al. [2014] as their

formulation supports non-factorable measures. We also identified key properties of

Bayesian network encodings that allow for parameter variable removal. However, these

properties were rather different for each encoding, and so an interesting question for

future work is whether they can be unified into a more abstract and coherent list of

conditions.

Bayesian network inference was chosen as the example application of WMC because

it is the first and the most studied one [Bart et al., 2016, Chavira and Darwiche, 2005,

2006, Darwiche, 2002, Sang et al., 2005a]. While the distinction between indicator and

parameter variables is often not explicitly described in other WMC encodings [Fierens

et al., 2015, Holtzen et al., 2020b, Xu et al., 2018], perhaps variables could still be

partitioned in this way, allowing for not just faster inference with DPMC or ADDMC

but also for well-established WMC encoding and inference techniques (such as in the

work by Chavira and Darwiche [2005, 2006]) to be transferred to other application

domains.

Similarly, could weighted first-order model counting (WFOMC) benefit from a

more flexible approach to weights? The standard (‘symmetric’) definition of WFOMC

assigns a pair of weights to each predicate [Van den Broeck et al., 2011]. Perhaps
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Combination Fastest Solved

ACE+cd05 27 1247

ACE+cd06 135 1340

ACE+d02 56 1060

DPMC+bklm16 241 1327

DPMC+bklm16++ 992 1435
DPMC+cd05++ 0 867

DPMC+cd06++ 0 932

DPMC+d02 1 1267

DPMC+d02++ 7 1272

DPMC+sbk05 31 1308

C2D+bklm16 0 997

CACHET+sbk05 49 983

Table 4.1: The numbers of instances (out of 1466) that each algorithm and encoding

combination solved faster than any other combination and in total.

WFOMC could benefit from weights that depend on numerical constants in addition to

predicates. This idea could also be seen as an extension of weighted first-order model

integration [Feldstein and Belle, 2021] to discrete measurable spaces.

Lastly, we noted how the parameter equivalent to primal treewidth used by DPMC

[Dudek et al., 2020b] remains virtually unchanged by our transformation despite a

significant reduction in instance size. We also know that WMC (and hence WMC in

the PBP format) is fixed-parameter tractable (FPT) with respect to primal treewidth

(see Chapter 7 for a discussion on the parameterised complexity of WMC). WMC

being FPT means that it admits kernelisation. In other words, any WMC instance

can be transformed (in polynomial time) to an instance whose size depends only on

the parameter (e.g., primal treewidth) and not on the size of the original instance

[Downey and Fellows, 2013]. So, perhaps the WMC to PBP transformation presented

in this chapter can be improved and formalised into a kernelisation algorithm for

WMC instances within this more flexible PBP format. Kernelisation as well as the

parameterised complexity angle on WMC more broadly is an underexplored area of

research that we approach in more detail in Chapter 7.
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Chapter 5

Recursive Solutions to FOMC

5.1 Introduction

First-order model counting (FOMC) is the problem of computing the number of models

of a sentence in first-order logic (FOL) given the size(s) of its domain(s) [Beame et al.,

2015]. Symmetric weighted FOMC (WFOMC) extends FOMC with (pairs of) weights

on predicates and asks for a weighted sum across all models instead. By fixing the sizes

of the domains, a WFOMC instance can be rewritten as a WMC instance. WFOMC

emerged as the dominant approach to lifted (probabilistic) inference. Lifted inference

techniques exploit symmetries in probabilistic models by reasoning about sets rather

than individuals [Kersting, 2012]. By doing so, many instances become solvable in

polynomial time [Van den Broeck, 2011]. Lifted inference algorithms are typically used

on probabilistic models such as probabilistic programming languages [De Raedt and

Kimmig, 2015, Riguzzi et al., 2017], Markov logic networks [Van den Broeck et al.,

2011, Gogate and Domingos, 2016, Richardson and Domingos, 2006], and other lifted

graphical [Kimmig et al., 2015] and statistical relational [De Raedt et al., 2016] models.

Lifted inference techniques for probabilistic databases, while developed somewhat

independently, have also been inspired by WFOMC [Gatterbauer and Suciu, 2015,

Gribkoff et al., 2014]. While WFOMC tends to receive more attention in the literature,

FOMC is an interesting problem in an of itself because of its connections to finite model

theory [van Bremen and Kuzelka, 2021a] and applications in enumerative combinatorics

[Barvı́nek et al., 2021].

Traditionally in computational complexity theory, a problem is tractable if it can

be solved in time polynomial in the instance size. The equivalent notion in (W)FOMC

is liftability. A (W)FOMC instance is (domain-)liftable if it can be solved in time

69
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polynomial in the size(s) of the domain(s) [Jaeger and Van den Broeck, 2012]. Over

more than a decade, many classes of instances were shown to be liftable [van Bremen

and Kuzelka, 2021a, Kazemi et al., 2016, Kuusisto and Lutz, 2018, Kuzelka, 2021].

First, Van den Broeck [2011] showed that the class of all sentences of FOL with up

to two variables (denoted FO2) is liftable. Then Beame et al. [2015] proved that there

exists a sentence with three variables for which FOMC is #P1-complete (i.e., FO3 is not

liftable). Since these two results came out, most of the research on (W)FOMC focused

on developing faster solutions for the FO2 fragment [van Bremen and Kuzelka, 2021b,

Malhotra and Serafini, 2022] and defining new liftable fragments. These fragments

include S2FO2 and S2RU [Kazemi et al., 2016], U1 [Kuusisto and Lutz, 2018], FO2

with tree axioms [van Bremen and Kuzelka, 2021a], and C2 (i.e., the two-variable

fragment with counting quantifiers) [Kuzelka, 2021, Malhotra and Serafini, 2022]. On

the empirical front, there are several open-source implementations of exact WFOMC

algorithms: FORCLIFT [Van den Broeck et al., 2011], probabilistic theorem proving

[Gogate and Domingos, 2016], and L2C [Kazemi and Poole, 2016]. Approximate

counting is supported by APPROXWFOMC [van Bremen and Kuzelka, 2020] as well

as FORCLIFT [Van den Broeck et al., 2012] and probabilistic theorem proving [Gogate

and Domingos, 2016].

However, none of the publicly available exact (W)FOMC algorithms can efficiently

compute functions as simple as a factorial.1 We claim that this shortcoming is due to

the inability of these algorithms to construct recursive solutions. The topic of recursion

in the context of WFOMC has been studied before but in limited ways. Barvı́nek

et al. [2021] use WFOMC to generate numerical data that is then used to conjecture

recurrence relations that explain that data. Van den Broeck [2011] introduced the idea

of domain recursion. Intuitively, domain recursion partitions a domain of size n into

a single explicitly named constant and the remaining domain of size n−1. However,

many stringent conditions are enforced to ensure that the search for a tractable solution

always terminates.

In this work, we show how to relax these restrictions in a way that results in a

stronger (W)FOMC algorithm, capable of handling more instances (e.g., counting

various injective mappings) in a lifted manner. The ideas presented in this chapter are

implemented in CRANE—an extension of the arguably most well-known WFOMC

algorithm FORCLIFT. FORCLIFT works in two stages: compilation and evaluation/-

1There is previous work [Kuzelka, 2021, Van den Broeck, 2016] showing how FOMC can compute
factorials in principle, but an algorithm that can lift such an instance in practice does not exist.
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φ(n)

φ(n)

(a) The kind of non-tree-like edges that are sup-

ported by both FORCLIFT and CRANE, i.e., those

that create cycles in the undirected version of

the graph but not directed cycles

φ(n)

ψ(n)

φ(n−1)

GDR

CR

n 7→ n−1

(b) The kind of non-tree-like edges

that are only supported by CRANE, i.e.,

those that create directed cycles

Figure 5.1: Non-tree-like edges in first-order knowledge compilation (highlighted in blue)

propagation.2 In the first stage, various (compilation) rules are applied to the input

(or some derivative) formula, gradually constructing a circuit. In the second stage,

the weights of the instance are propagated through the circuit, computing the WMC.

Along with new compilation rules, CRANE introduces changes to both stages of the

process. First, while FORCLIFT applies compilation rules via greedy3 search, CRANE

uses a hybrid search algorithm that applies some rules greedily and some using breadth-

first search. Second, the product of compilation is not directly evaluated but rather

interpreted as a collection of functions on domain sizes.

The main conceptual difference between CRANE and FORCLIFT is that we utilise

labelled directed graphs instead of circuits. The cycles in these graphs represent

recursive calls. See Figure 5.1b for an illustration of an example scenario. Suppose the

original formula φ depends on a domain of size n ∈ N. Generalised domain recursion

(GDR)—one of the new compilation rules—transforms φ into a different formula

ψ that has an additional constant and some new constraints. After some additional

transformations, the constraints in ψ become ‘uniform’ and can be removed, replacing

the domain of size n with a new domain of size n− 1—this is the responsibility of

the constraint removal (CR) compilation rule. Afterwards, another compilation rule

recognizes that the resulting formula φ(n−1) is just like the input formula φ(n) except

it refers to a different domain. This observation allows us to add a cycle-forming edge

2There is also an intermediate stage called smoothing that takes place between compilation and
evaluation. As our changes to smoothing are rather elementary, we do not discuss them to not distract the
reader from the main contributions of this chapter.

3The algorithm is not described in any paper on FORCLIFT but can be found in its source code at
https://dtai.cs.kuleuven.be/drupal/wfomc

https://dtai.cs.kuleuven.be/drupal/wfomc
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to the graph (highlighted in blue in Figure 5.1b), which can be interpreted as function

f relying on f (n−1) to compute f (n). To construct such graphs, we also introduce a

novel search algorithm that replaces the greedy search used by FORCLIFT.

Section 5.2 defines the representation used for sentences in FOL as well as discusses

caching and some notational conventions. At the beginning of Section 5.3, we formally

define the graphs that replace circuits in representing a solution to a (W)FOMC problem

and discuss some related notions. Section 5.3.1 introduces the new compilation rules.

Section 5.3.2 then describes our new search algorithm that makes fewer assumptions

than FORCLIFT about the right order in which compilation rules should be applied. In

Section 5.4, we discuss how a graph can be interpreted as a collection of (potentially

recursive) functions. Finally, in Section 5.5 we compare FORCLIFT and CRANE on

a range of function-counting problems. We show that CRANE performs as well as

FORCLIFT on the instances that were already solvable by FORCLIFT but is also able to

handle most of the instances that FORCLIFT fails on.

5.2 Preliminaries

In this section, we describe our format for FOMC instances, introduce some notation,

and discuss our caching scheme, which is used to identify possibilities for a recursive

call. Note that although the focus of this chapter is on unweighted model counting,

FORCLIFT’s [Van den Broeck et al., 2011] support for weights trivially transfers to

CRANE as well.

Our representation of FOMC instances is largely based on the format used internally

by FORCLIFT, some aspects of which are described by Van den Broeck et al. [2011].

FORCLIFT can translate sentences in a variant of function-free many-sorted FOL with

equality to this internal format. We use lowercase Latin letters for predicates and

constants, uppercase Latin letters for variables, and uppercase Greek letters for domains.

An atom is p(t1, . . . , tn) for some predicate p and terms t1, . . . , tn. A term is either a

constant or a variable. A literal is either an atom or the negation of an atom (denoted by

¬p(t1, . . . , tn)). Let D be the set of all (finite) domains. Initially, D contains all domains

mentioned by the input (W)FOMC instance. During compilation, new domains are

added to D by some of the compilation rules. Each such new domain is interpreted as a

subset of some element of D .

Definition 5.1 (Constraint). An (inequality) constraint is a pair (a,b), where a is a

variable, and b is either a variable or a constant.
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Definition 5.2 (Clause). A clause4 is a triple c = (L,C,δc), where L is a set of literals,

C is a set of constraints, and δc is the domain map of c. Let Vars be the function that

maps clauses and sets of either literals or constraints to the set of variables contained

within. In particular, Vars(c) := Vars(L)∪Vars(C). Domain map δc : Vars(c)→D is a

function that maps all variables in c to their domains such that (s.t.) if (X ,Y ) ∈C for

some variables X and Y , then δc(X) = δc(Y ). For convenience, we sometimes write δc

for the domain map of c without unpacking c into its three constituents.

Similarly to variables in Definition 5.2, all constants are (implicitly) mapped to

domains, and each n-ary predicate is implicitly mapped to a sequence of n domains.

For constant or variable x, predicate p, and domains Γ and ∆, we write, e.g., x ∈ Γ and

p ∈ Γ×∆ to denote that x is associated with Γ, and p is associated with Γ and ∆ (in that

order).

Definition 5.3 (Formula). A formula (called a c-theory by Van den Broeck et al. [2011])

is a set of clauses s.t. all constraints and atoms ‘type check’ with respect to domains.

Example 5.1. Let φ := {c1,c2 } be a formula with clauses

c1 := ({¬p(X ,Y ),¬p(X ,Z)},{(Y,Z)},{X 7→ Γ,Y 7→ ∆,Z 7→ ∆}),

c2 := ({¬p(X ,Y ),¬p(Z,Y )},{(X ,Z)},{X 7→ Γ,Y 7→ ∆,Z 7→ Γ})

for some predicate p, variables X , Y , Z, and domains Γ and ∆. Then Vars({(Y,Z)}) =
{Y,Z }, and Vars(c1) = Vars(c2) = {X ,Y,Z }. Based on the domain maps of c1 and

c2, we can infer that p ∈ Γ×∆. All variables (in both clauses) that occur as the first

argument to p are in Γ, and, likewise, all variables that occur as the second argument to

p are in ∆. Therefore, φ ‘type checks’ as a valid formula.

There are two major differences between Definitions 5.1–5.3 and the corresponding

concepts introduced by Van den Broeck et al. [2011]. First, we decouple variable-

to-domain assignments from constraints and move them to a separate function δc in

Definition 5.2. Formalising these assignments as a function unveils the (previously

implicit) assumption that each variable must be assigned to a domain. Second, while

Van den Broeck et al. [2011] allow for equality constraints and constraints of the form

X ̸∈ ∆ for some variable X and domain ∆, we exclude such constraints simply because

they are not needed.

4Van den Broeck et al. [2011] refer to clauses as c-clauses.
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One can read a formula from Definition 5.3 as a sentence in a FOL. All variables in

a clause are implicitly universally quantified (but note that variables are never shared

among clauses), and all clauses in a formula are implicitly linked by a conjunction.

Thus, formula φ from Example 5.1 reads as

(∀X ∈ Γ. ∀Y ∈ ∆. ∀Z ∈ ∆. Y ̸= Z =⇒ ¬p(X ,Y )∨¬p(X ,Z))∧

(∀X ∈ Γ. ∀Y ∈ ∆. ∀Z ∈ Γ. X ̸= Z =⇒ ¬p(X ,Y )∨¬p(Z,Y )).

Once domains are mapped to finite sets and constants to specific (and different)

elements in those sets, a formula can be viewed as a set of conditions that the predicates

(interpreted as relations) have to satisfy.5 Hence, FOMC is the problem of counting the

number of combinations of relations that satisfy these conditions.

Example 5.2. Let φ be as in Example 5.1 and let |Γ|= |∆|= 2. There are 22×2 = 16

possible relations between Γ and ∆. Let us count how many of them satisfy the

conditions imposed on predicate p. The empty relation does. All four relations of

cardinality one do too. Finally, there are two relations of cardinality two that satisfy the

conditions as well. Thus, the FOMC of φ (when |Γ|= |∆|= 2) is 7. Incidentally, the

FOMC of φ counts partial injections. We will continue to use the problem of counting

partial injections (and the formula from Example 5.1 specifically) as the main running

example throughout the chapter.

Notation for functions. We write→ for functions, 7→ for partial functions,↣↠ for

bijections, and ↪→ for set inclusion. Let id denote the identity function (on any domain).

For any function f , let dom( f ) be its domain, and Im f be its image.

Notation for lists. Let ⟨⟩ and ⟨x⟩ denote an empty list and a list with one element

x, respectively. We write ∈ for (in-order) enumeration, ++ for concatenation, and | · |
for the length of a list. Let h : t denote a list with the first element (i.e., head) h and

the remaining list (i.e., tail) t. We also use list comprehensions written equivalently

to set comprehensions. For example, let L := ⟨1⟩ and M := ⟨2⟩ be two lists. Then

M = ⟨2x | x ∈ L⟩, L++M = 1 : ⟨2⟩, and |M|= 1.

Hashing. We use (integer-valued) hash functions to efficiently discard pairs of for-

mulas that are too different for recursion to be established. The hash code of a clause
5If some domain is not big enough to contain all of its constants, the formula is unsatisfiable.
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c = (L,C,δ) (denoted by #c) combines the hash codes of the sets of constants and

predicates in c, the numbers of positive and negative literals, the number of inequality

constraints |C|, and the number of variables |Vars(c)|. The hash code of a formula φ

combines the hash codes of all its clauses and is denoted by #φ.

Caching. Van den Broeck et al. [2011] use a cache to check if a formula is identical

to one of the formulas that have already been fully compiled. If that is the case, then

the circuit already contains the subcircuit for this formula. Instead of duplicating this

subcircuit, one would draw an edge that creates an undirected (but not a directed) cycle

(as in Figure 5.1a). To facilitate recursion, we extend the caching scheme to include

formulas that have been encountered but not fully compiled yet. Hence, the same

procedure can now create directed cycles in the FCG. Formally, we define a cache to be

a map from integers (e.g., hash codes) to sets of pairs of the form (φ,v), where φ is a

formula, and v is an FCG node.

5.3 Methods

We begin this section by formally defining the graphs that CRANE uses as a gener-

alisation of circuits. Then, Section 5.3.1 describes three new compilation rules, and

Section 5.3.2 outlines the hybrid search algorithm that replaces the greedy search used

by FORCLIFT [Van den Broeck et al., 2011].

A first-order deterministic decomposable negation normal form computational

graph (FCG) is a (weakly connected) directed graph with a single source, node labels,

and ordered outgoing edges.6 We denote an FCG as G = (V,s,N+,τ), where V is the

set of nodes, and s ∈V is the unique source. Function N+ maps each node in V to a list

of its direct successors. Node labels consist of two parts: the type and the parameters.

To avoid clutter, we leave the parameters implicit and let τ denote the node-labelling

function that maps each node in V to its type. For each node v ∈V , the length of list

N+(v) (i.e., the out-degree of v) is determined by its type τ(v). Most node types are

as in previous work [Van den Broeck, 2011, Van den Broeck et al., 2011]. The type

for non-tree-like edges (denoted by REF), while used before, is extended to contain the

information necessary to support recursive calls. We also add three new types:

• a type for constraint removal denoted by CR,

6Imposing an ordering on outgoing edges is just a limited version of edge labelling.
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GDRΓ←Γ\{x}

∨
∆⊤⊆∆

CRΓ7→Γ′

∧

⊥( /0,{(X ,Y )},{X 7→∆⊤,Y 7→∆⊤ }) REF{Γ 7→Γ′,∆7→∆⊥ }

Figure 5.2: A simplified version of an FCG constructed by CRANE for the problem of

counting partial injections from Example 5.1. Label
∨

∆⊤⊆∆
denotes set-disjunction, ∧

denotes conjunction, and ⊥ denotes a contradiction—see the work by Van den Broeck

et al. [2011] for the descriptions of these node types. Here we omit nodes whose only

arithmetic effect is multiplication by one. Some of these nodes play an important role

in the weighted version of the problem, whereas others are remnants of the interaction

between compilation rules and the way in which FORCLIFT handles existential quantifiers.

• a type for generalised domain recursion denoted by GDR (both with out-degree

one),

• and ⋆—a placeholder type (with out-degree zero) for nodes that are going to be

replaced.

When drawing an FCG, we order outgoing edges from left to right, write node labels

directly on the nodes, and omit irrelevant labels and/or parameters. See Figure 5.2

for an example of an FCG. Its source node has out-degree 1 (i.e., |N+(s)|= 1), label

GDRΓ←Γ\{x}, and type GDR (i.e., τ(s) = GDR).

Similarly to Van den Broeck et al. [2011], we write Tp for an FCG that has a node

with the label Tp (i.e., type T and parameter(s) p) and ⋆’s as all of its direct successors.

In particular, as an FCG, ⋆ denotes ({s},s,{s 7→ ⟨⟩},{s 7→ ⋆}), i.e., an FCG with just

one node of type ⋆ and no edges. We write Tp(v) for an FCG with one edge from a node

labelled Tp to some other node v (and no other nodes or edges).

Finally, we introduce a structure that represents a solution to a (W)FOMC problem

while it is still being built. A chip is a pair (G,L), where G is an FCG, and L is a list of
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1

2

REF ⋆
3

⋆
4

(a) An example of an FCG

1

2

⋆
3

⋆
4

(b) The underlying tree of Figure 5.3a

Figure 5.3: An FCG and its underlying tree. The integers in blue denote the pre-order

traversal of the underlying tree.

formulas, s.t. |L| is equal to the number of ⋆’s in G. L contains formulas that still need

to be compiled. Once a formula is compiled, it replaces one of the ⋆’s in G. We say that

an FCG is complete (i.e., it represents a complete solution) if it has no ⋆’s. Similarly, a

chip is complete if its FCG is complete (or, equivalently, the list of formulas is empty).

Let the underlying tree of G be the induced subgraph of G that omits all REF nodes.7

Then we can define an implicit bijection between the formulas in L and the ⋆’s in G

according to the order in which elements of L are listed and the pre-order traversal of

the underlying tree of G. For example, if G is as in Figure 5.3a (with its underlying tree

in Figure 5.3b), then |L|= 2. Moreover, the first element of L is associated with the ⋆

labelled 3, and the second with the one labelled 4.

5.3.1 New Compilation Rules

A (compilation) rule takes a formula and returns a set of chips. The cardinality of this

set is the number of different ways in which the rule can be applied to the input formula.

While FORCLIFT [Van den Broeck et al., 2011] heuristically chooses one of them, in an

attempt to not miss a solution, CRANE returns them all. In particular, if a rule returns

an empty set, then that rule does not apply to the formula.

5.3.1.1 Generalised Domain Recursion

Notation. Let S be a set of constraints or literals, V a set of variables, and x a variable

or a constant. We write S[x/V ] to denote S with all occurrences of all variables in V

7Subsequently presented algorithms ensure that the underlying tree is guaranteed to be a tree.
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replaced with x.8

The main idea behind domain recursion (both the original version by Van den

Broeck [2011] and the one presented here) is as follows. Let Ω ∈ D be a domain.

Assuming that Ω ̸= /0, pick some x ∈Ω. Then, for every variable X ∈Ω that occurs in a

literal, consider two possibilities: X = x and X ̸= x.

Example 5.3. Let φ be a formula with a single clause

({¬p(X ,Y ),¬p(X ,Z)},{(Y,Z)},{X 7→ Γ,Y 7→ ∆,Z 7→ ∆}).

Then we can introduce constant x ∈ Γ and rewrite φ as φ′ = {c1,c2 }, where

c1 = ({¬p(x,Y ),¬p(x,Z)},{(Y,Z)},{Y 7→ ∆,Z 7→ ∆}),

c2 = ({¬p(X ,Y ),¬p(X ,Z)},{(X ,x),(Y,Z)},{X 7→ Γ
′,Y 7→ ∆,Z 7→ ∆}),

and Γ′ = Γ\{x}.

Van den Broeck [2011] imposes stringent conditions on the input formula to ensure

that the expanded version of the formula (as in Example 5.3) can be handled efficiently.

For instance, Example 5.1 cannot be handled by FORCLIFT because there is no root

binding class, i.e., the two root variables belong to different equivalence classes with

respect to the binding relationship. The clauses in this expanded formula are then

partitioned into three parts based on whether the transformation introduced constants

or constraints or both. The aforementioned conditions ensure that these parts can be

treated independently.

In contrast, GDR has only one precondition: for GDR to be applicable on domain

Ω ∈D, there must be at least one variable with domain Ω that is featured in a literal

(and not just in constraints). Without such variables, GDR would have no effect on

the formula. GDR is also simpler in that the expanded formula is left as-is to be

handled by other compilation rules. Typically, after a few more rules are applied, a

combination of CR and REF nodes introduces a cycle-inducing edge back to the GDR

node, thus completing the definition of a recursive function. The GDR compilation rule

is summarised as Algorithm 5.1 and explained in more detail using the example below.

Example 5.4. Let φ := {c1,c2 } be the formula from Example 5.1 with clauses

c1 = ({¬p(X ,Y ),¬p(X ,Z)},{(Y,Z)},{X 7→ Γ,Y 7→ ∆,Z 7→ ∆}),

c2 = ({¬p(X ,Y ),¬p(Z,Y )},{(X ,Z)},{X 7→ Γ,Y 7→ ∆,Z 7→ Γ}).

8If (X ,Y ) is a two-variable constraint, substituting a constant c for X would result in (c,Y ), which
would have to be rewritten as (Y,c) to fit the definition of a constraint.
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Algorithm 5.1: The compilation rule for GDR nodes.
Input: formula φ, set of all relevant domains D
Output: set of chips S

1 S← /0;

2 foreach domain Ω ∈D s.t. there is c ∈ φ and X ∈ Vars(Lc) s.t. δc(X) = Ω do
3 φ′← /0;

4 x← a new constant in domain Ω;

5 foreach clause c = (L,C,δ) ∈ φ do
6 V ←{X ∈ Vars(L) | δ(X) = Ω};
7 foreach subset W ⊆V s.t. W 2∩C = /0 and

W ∩{X ∈ Vars(C) | (X ,y) ∈C for some constant y}= /0 do
/* δ′ restricts δ to the new set of variables */

8 φ′← φ′∪{(L[x/W ],C[x/W ]∪{(X ,x) | (X ∈V \W )},δ′)};

9 S← S∪{(GDRΩ←Ω\{x},⟨φ′⟩)};

While GDR is possible on both domains, here we illustrate how it works on Γ. Having

chosen a domain, the algorithm iterates over the clauses of φ. Suppose line 5 picks

c = c1 as the first clause. Then, set V is constructed to contain all variables with domain

Ω = Γ that occur in the literals of clause c. In this case, V = {X }.
Line 7 iterates over all subsets W ⊆V of variables that can be replaced by a constant

without resulting in evidently unsatisfiable formulas. We impose two restrictions on W .

First, W 2∩C = /0 ensures that there are no pairs of variables in W that are constrained

to be distinct, since that would result in an x ̸= x constraint after substitution. Similarly,

we want to avoid variables in W that have inequality constraints with constants: after the

substitution, such constraints would transform into inequality constraints between two

constants. In this case, both subsets of V satisfy these conditions, and line 8 generates

two clauses for the output formula:

({¬p(X ,Y ),¬p(X ,Z)},{(Y,Z),(X ,x)},{X 7→ Γ,Y 7→ ∆,Z 7→ ∆}),

from W = /0 and

({¬p(x,Y ),¬p(x,Z)},{(Y,Z)},{Y 7→ ∆,Z 7→ ∆})

from W =V .

When line 5 picks c = c2, then V = {X ,Z }. The subset W =V fails to satisfy the

conditions on line 7 because of the X ̸= Z constraint. The other three subsets of V all
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generate clauses for φ′. Indeed, W = /0 generates

({¬p(X ,Y ),¬p(Z,Y )},{(X ,Z),(X ,x),(Z,x)},{X 7→ Γ,Y 7→ ∆,Z 7→ Γ}),

W = {X } generates

({¬p(x,Y ),¬p(Z,Y )},{(Z,x)},{Y 7→ ∆,Z 7→ Γ}),

and W = {Z } generates

({¬p(X ,Y ),¬p(x,Y )},{(X ,x)},{X 7→ Γ,Y 7→ ∆}).

5.3.1.2 Constraint Removal

Recall that GDR on a domain Ω creates constraints of the form Xi ̸= x for some

constant x ∈ Ω and family of variables Xi ∈ Ω. Once certain conditions are satisfied,

we can eliminate these constraints and replace Ω with a new domain Ω′, which can be

interpreted as Ω\{x}. These conditions are that a constraint of the form X ̸= x exists

for all variables X ∈Ω across all clauses, and such constraints are the only place where

x occurs. We formalise the conditions as Definition 5.4.

Definition 5.4. With respect to a formula φ, a pair (Ω,x) of a domain Ω ∈D and its

element x ∈Ω is called replaceable if

• x does not occur in any literal of any clause of φ,

• and for each clause c = (L,C,δc) ∈ φ and variable X ∈Vars(c), either δc(X) ̸= Ω

or (X ,x) ∈C.

Once a replaceable pair is found, Algorithm 5.2 proceeds to construct the new

formula by removing constraints (on line 6) and constructing a new domain map δ′ that

replaces Ω with Ω′ (on line 7).

Example 5.5. Let φ = {c1,c2 } be a formula with clauses

c1 = ({¬p(X ,Y ),¬p(X ,Z)},{(X ,x),(Y,Z)},{X 7→ Γ,Y 7→ ∆,Z 7→ ∆}),

c2 = ({¬p(X ,Y ),¬p(Z,Y )},{(X ,x),(Z,X),(Z,x)},{X 7→ Γ,Y 7→ ∆,Z 7→ Γ}).

Domain Γ and its element x ∈ Γ satisfy the preconditions for CR. The rule introduces a

new domain Γ′ and transforms φ to φ′ = (c′1,c
′
2), where

c′1 = ({¬p(X ,Y ),¬p(X ,Z)},{(Y,Z)},{X 7→ Γ
′,Y 7→ ∆,Z 7→ ∆}),

c′2 = ({¬p(X ,Y ),¬p(Z,Y )},{(Z,X)},{X 7→ Γ
′,Y 7→ ∆,Z 7→ Γ

′ }).
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Algorithm 5.2: The compilation rule for CR nodes.
Input: formula φ, set of all relevant domains D
Output: set of chips S

1 S← /0;

2 foreach replaceable pair (Ω ∈D,x ∈Ω) do
3 add a new domain Ω′ to D;

4 φ′← /0;

5 foreach clause (L,C,δ) ∈ φ do
6 C′←{(a,b) ∈C | b ̸= x};

7 δ′← X 7→

Ω′ if δ(X) = Ω

δ(X) otherwise;

8 φ′← φ′∪{(L,C′,δ′)}

9 S← S∪{(CRΩ7→Ω′,⟨φ′⟩)};

5.3.1.3 Identifying Opportunities for Recursion

Notation. First, for partial functions α,β : A 7→B s.t. α|dom(α)∩dom(β)= β|dom(α)∩dom(β),

we write α∪β for the unique partial function s.t. α∪β|dom(α) = α, and α∪β|dom(β) = β.

Second, let Doms be a function that maps any clause or formula to the set of do-

mains used within. Specifically, Doms(c) := Imδc for any clause c, and Doms(φ) :=⋃
c∈φ Doms(c) for any formula φ. Third, for any clause c=(L,C,δc), bijection β : Vars(c)↣↠

V (for some set of variables V ), and function γ : Doms(c)→D, let c[β,γ] = d be the

clause c with all occurrences of any variable X ∈Vars(c) in L and C replaced with β(X)

(so Vars(d) =V ) and δd : V →D defined as δd := γ◦δc ◦β−1. In other words, δd is the

unique function that makes

Vars(c) V = Vars(d)

Doms(c) D

β

δc ∃!δd

γ

commute. For example, if clause

c1 := ({¬p(X ,Y ),¬p(X ,Z)},{(Y,Z)},{X 7→ Γ,Y 7→ ∆,Z 7→ ∆})
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is as in Example 5.1, then

c1[{X 7→ A,Y 7→ B,Z 7→C},{Γ 7→ ∆,∆ 7→ Λ}] =

({¬p(A,B),¬p(A,C)},{(B,C)},{A 7→ ∆,B 7→ Λ,C 7→ Λ}).

Algorithm 5.3 describes the compilation rule for creating REF nodes. For every

formula ψ s.t. #ψ = #φ that we have encountered so far, function identifyRecursion

is called to check whether a recursive call is feasible. If it is, the function returns a (total)

map ρ : Doms(ψ)→Doms(φ) that shows how ψ can be transformed into φ by replacing

each domain Ω ∈ Doms(ψ) with ρ(Ω) ∈ Doms(φ). Otherwise, identifyRecursion

returns null to signify that φ and ψ are too different for recursion to work. This happens

if φ and ψ (or their subformulas explored in recursive calls) are structurally different

(i.e., the numbers of clauses or the hash codes fail to match) or if a clause of ψ cannot

be paired with a sufficiently similar clause of φ.

Function identifyRecursion iterates over pairs of clauses of φ and ψ that have

the same hash codes. It uses the function generateMaps to check whether the two

clauses are sufficiently similar. If so, the function calls itself on the remaining clauses

until the map ρ : Doms(ψ) 7→ Doms(φ) becomes total, and all clauses are successfully

coupled.

Given two clauses c ∈ ψ and d ∈ φ, generateMaps considers all possible bijec-

tions9 β : Vars(c)↣↠ Vars(d) and calls constructDomainMap, which then attempts

to construct a map γ : Doms(c)→ Doms(d) consistent with both β and (the as yet

partial map) ρ : Doms(ψ) 7→ Doms(φ). The yield keyword in generateMaps works

as in programming languages such as C#, JavaScript, and Python, and lazily returns a

sequence of values, computing each element of the sequence as needed.

Diagrammatically, constructDomainMap attempts to find a γ : Doms(c)→Doms(d)

s.t.

V = Vars(c) Vars(d)

Doms(c) Doms(d)

Doms(ψ) Doms(φ).

β

δc δd

γ

ρ

|

(5.1)

9Although the number of bijections between two sets of cardinality n is n!, this part of the algorithm is
unlikely to cause performance issues for two reasons. First, in practice, n is usually at most two or three.
Second, due to how formulas are modified by compilation rules, if any bijection results in a successfully
identified recursive relationship, it is almost always the identity bijection.
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commutes (and returns null if such a function does not exist). Indeed, for every variable

in V = Vars(c), the function returns null if either the top rectangle from V to Doms(d)

or the outer rectangle from V to Doms(φ) fails to commute. These checks also ensure

that ρ∪ γ is possible on line 11 of the algorithm, i.e., ρ|dom(ρ)∩dom(γ) = γ|dom(ρ)∩dom(γ).

Example 5.6. As in Example 5.1, let ψ := {c1,c2 } be a formula with clauses

c1 = ({¬p(X ,Y ),¬p(X ,Z)},{(Y,Z)},{X 7→ Γ,Y 7→ ∆,Z 7→ ∆}),

c2 = ({¬p(X ,Y ),¬p(Z,Y )},{(X ,Z)},{X 7→ Γ,Y 7→ ∆,Z 7→ Γ}).

Let formula φ := ψ[id,{Γ 7→ Γ′,∆ 7→ ∆⊥ }] be just like ψ but with different domains. In

other words, φ = {d1,d2 }, where

d1 := ({¬p(X ,Y ),¬p(X ,Z)},{(Y,Z)},{X 7→ Γ
′,Y 7→ ∆

⊥,Z 7→ ∆
⊥ }),

d2 := ({¬p(X ,Y ),¬p(Z,Y )},{(X ,Z)},{X 7→ Γ
′,Y 7→ ∆

⊥,Z 7→ Γ
′ }).

Note that #φ = #ψ and assume that (ψ,v) ∈C(#φ) for some node v. We shall see how

Algorithm 5.3 identifies that the FCG for ψ can be reused for φ as well.

Since both formulas are non-empty, the algorithm proceeds with the for-loops on

lines 8–10. Suppose c = c1 and d = d1 get picked. Since both clauses have three

variables, in the worst case, function generateMaps would have 3! = 6 bijections to

check. Suppose the identity bijection is picked first. Then constructDomainMap is

called with the following parameters:

• V = {X ,Y,Z },

• δc = {X 7→ Γ,Y 7→ ∆,Z 7→ ∆},

• δd = {X 7→ Γ′,Y 7→ ∆⊥,Z 7→ ∆⊥ },

• β = id = {X 7→ X ,Y 7→ Y,Z 7→ Z },

• ρ = /0.

Since δc(Y ) = δc(Z), and δd(Y ) = δd(Z), constructDomainMap returns γ = {Γ 7→
Γ′,∆ 7→ ∆⊥ }. Thus, generateMaps yields its first pair of maps (β,γ) to line 10. Further-

more, this pair satisfies c[β,γ] = d. On line 11, a recursive call to identifyRecursion({c2 },
{d2 }, γ) is made.

In this subproblem where both formulas are left with a single clause each, again we

have two non-empty formulas with equal hash codes. Thus generateMaps is called

with c = c2, d = d2, and ρ = {Γ 7→ Γ′,∆ 7→ ∆⊥ }. Suppose line 15 picks the identity

bijection gain. Then constructDomainMap is called with the following parameters:
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• V = {X ,Y,Z },

• δc = {X 7→ Γ,Y 7→ ∆,Z 7→ Γ},

• δd = {X 7→ Γ′,Y 7→ ∆⊥,Z 7→ Γ′ },

• β = id = {X 7→ X ,Y 7→ Y,Z 7→ Z },

• ρ = {Γ 7→ Γ′,∆ 7→ ∆⊥ }.

Since β and ρ commute (as in Diagram 5.1), and there are no new domains in Doms(c)

and Doms(d), γ exists and is equal to ρ. Again, the returned pair (β,γ) satisfies

c[β,γ] = d. Line 11 calls identifyRecursion( /0, /0, ρ), which immediately returns

ρ = {Γ 7→ Γ′,∆ 7→ ∆⊥ } as the final answer. Therefore, one can indeed reuse an FCG

for ψ to compute the model count of φ.

5.3.2 Compilation as Search

Given a formula φ, we want to find an FCG that encodes a way to compute the model

count of φ. While FORCLIFT [Van den Broeck et al., 2011] uses greedy search, CRANE

has a new search algorithm—a combination of greedy and breadth-first search.

We split all compilation rules into greedy and non-greedy. Greedy rules represent

indisputable choices in the compilation process. They are applied to each encountered

formula as soon and as many times as possible (in a predefined order). Most rules are

greedy, i.e., those that produce a sink node with no leftover formula, those that simplify

the formula without changing the FCG, and those that split the formula into parts that

can be solved independently. The CR rule described in Section 5.3.1.2 is greedy. On the

other hand, non-greedy rules signify uncertain choices that we may want to retract. They

also correspond to edges in the implicit search tree; thus, the first solution found by the

search algorithm always has the fewest applications of non-greedy rules. These rules

include the GDR and REF rules described in Sections 5.3.1.1 and 5.3.1.3, respectively,

and some rules from previous work [Van den Broeck et al., 2011] such as atom counting,

inclusion-exclusion, independent partial grounding, and shattering.

Search can be conceptualised as traversing a directed graph composed of states and

actions that lead from one state to the next. We define a state as a triple (G,L,C), where

(G,L) is a chip, and C is a cache. The actions that can be taken in such a state are

applications of compilation rules that remove the first formula from L and potentially

add something to G, L, and C.
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The search algorithm is described as Algorithms 5.4–5.7, with the main procedure in

Algorithm 5.4. Since for most formulas we find several FCGs (of various complexities),

the algorithm maintains a set S of found solutions, i.e., complete FCGs. We begin by

applying all suitable greedy rules on line 2. If greedy rules are enough to find a complete

FCG, the algorithm stops. Otherwise, lines 5 and 6 set up a queue for breadth-first

search. The algorithm continues to take a state from the queue, call applyAllRules on

it, and place the resulting states back on the queue while filtering out complete FCGs

and adding them to S instead. Since GDR can be applied to almost all formulas, the

search is infinite. In our implementation, we stop searching when one of the following

conditions is satisfied: (a) the desired number of solutions is found, (b) the search tree

reaches a certain height, or (c) the algorithm times out.

Function applyAllRules (see Algorithm 5.5) takes a state and generates a sequence

of new states created by applying one non-greedy rule followed by all applicable greedy

rules. We assume that the input state contains at least one formula (otherwise it would

be a complete solution) and that all applicable greedy rules have already been applied.

The algorithm iterates over all non-greedy rules and all chips generated by these rules

when applied to φ. If the FCG is ⋆, then |L′′|= 1, and L′′ contains a modified version

of φ—in this case, we rerun applyAllRules on the same state but with the updated

formula. Otherwise, we update the cache, call another function to apply greedy rules,

and merge (G′′,L′′) with a copy of the input state. In doing so, φ is replaced by L′′,

preserving the implicit bijection between the ordering of the list and the structure of ⋆’s

in the FCG.

Algorithm 5.6 defines two functions that work together to handle the application of

greedy rules. Function applyGreedyRules takes a formula and returns the maximal

chip that can be constructed by the application of greedy rules (and updates the cache

whenever the application of a rule results in a new node). The implementation of this

function is simplified by three assumptions about greedy rules. First, we assume that

greedy rules can be applied in any order. Second, we assume that the set of chips

returned by a greedy rule has at most one element. Third, if a rule returns an empty

FCG, i.e., G = ⋆, then L has exactly one formula, i.e., the rule simply transforms

the input formula. In such a case, we continue the application of greedy rules to the

new formula. Otherwise, line 5 updates the cache and calls the second function in

Algorithm 5.6, applyGreedyRulesToFormulas, on the new chip (G,L) that has |L|
new formulas that could benefit from greedy rules. Finally, if none of the greedy

rules is applicable, applyGreedyRules returns the same formula φ formatted as a
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state. Function applyGreedyRulesToFormulas takes a state and updates it by running

applyGreedyRules on all formulas in L and incorporating the resulting chips as direct

successors of the source node s. Hence, we assume that the input FCG (which comes

directly from applying a single greedy rule) has just one non-⋆ node, s, and N+(s)

contains exactly |L| ⋆’s.

Finally, Algorithm 5.7 describes two helper functions: updCache for updating the

cache and mergeFcgs for merging two FCGs. Note that REF nodes are not placed in the

cache because the relation identified by the compilation rule for REF (see Algorithm 5.3)

is transitive. In other words, instead of calling a function f (n) := g(m) (where n and

m are integer parameter vectors, and m is constructed from n), we can always directly

call function g. Function mergeFcgs finds a ⋆ in G and replaces it with G′. Note that

the order in which the nodes of G are visited must be the pre-order traversal of the

underlying tree of G. Hence, the algorithm skips REF nodes and, for each directed

edge, considers the source before considering the target. Parameter r, initially set to the

source of G, keeps track of the root of the subtree that needs to be explored. Recursive

calls return null if there are no ⋆’s in the subtree rooted at r. However, we only call

mergeFcgs with G’s that have at least one ⋆, so the return value of the initial call to the

function is never null.

Claim 5.1. Using the new compilation rules and search algorithm, CRANE is able

to construct an FCG for the problem of counting partial injections described in Ex-

ample 5.1. Moreover, this FCG encodes a solution that can be evaluated in Θ(mn) time,

where m = |Γ| and n = |∆|.

Our experiments in Section 5.5 confirm Claim 5.1 and establish similar results on

other function-counting problems. None of the previous (W)FOMC algorithms [Van

den Broeck et al., 2011, Gogate and Domingos, 2016, Kazemi and Poole, 2016] can

solve these newly liftable instances.

5.4 How to Interpret an FCG

When FORCLIFT [Van den Broeck et al., 2011] compiles a WFOMC instance into a

circuit, each node type encodes an arithmetic operation on its inputs and parameters.

These operations are then immediately performed while traversing the circuit and using

domain sizes and weights as the initial inputs. With CRANE, the interpretation of an

FCG is a collection of functions. Each function has (some) domain sizes as parameters
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and may contain recursive calls to other functions, including itself. While there may

be any number of subsidiary functions, there is always one main function that can be

called with the sizes of the domains of the input formula as arguments. Henceforth, this

function is always called f , and it is defined by the source node.

The interpretation of a node is decided by its type. Here we describe the interpreta-

tions of new (or significantly changed) types and refer the reader to previous work [Van

den Broeck et al., 2011] for information on other types. Both CR and GDR nodes do

not contribute anything to the definitions of functions—the interpretation of such a node

is simply the interpretation of its only direct successor. Obviously, ⋆ nodes also have no

interpretation, although for a different reason: incomplete FCGs are not meant to be

interpreted. The interpretation of a REF node is a function call. The direct successor of

the REF node (say, v) then must introduce a function. The parameters of this function

are the sizes of all domains used by nodes reachable from v.

Example 5.7. Consider the FCG from Figure 5.2. The input formula (i.e., the formula

from Example 5.1) has two domains: Γ and ∆. Thus, the interpretation of the FCG is a

function f : N0×N0→R≥0. Let m := |Γ|, and n := |∆|. The node labelled
∨

∆⊤⊆∆
tells

us that f (m,n) = ∑
n
l=0
(n

l

)
□, where □ is the interpretation of the remaining subgraph,

and l iterates over all possible sizes of ∆⊤. It also creates two subdomains ∆⊤,∆⊥ ⊆ ∆

that partition ∆, i.e., as the size of ∆⊤ increases, the size of ∆⊥ correspondingly decreases.

Nodes labelled ∧ correspond to multiplication. Therefore, f (m,n) = ∑
n
l=0
(n

l

)
♢×

♡, where ♢ is the interpretation of the contradiction (i.e., ⊥) node, and ♡ is the

interpretation of the REF node.

A contradiction node with clause c as a parameter is interpreted as one if the clause

has groundings and zero otherwise. In this case, c= ( /0,{(X ,Y )},{X 7→∆⊤,Y 7→∆⊤ }),
which can be read as ∀X ,Y ∈ ∆⊤. X ̸= Y =⇒ ⊥, i.e., ∀X ,Y ∈ ∆⊤. X = Y . This latter

sentence is true if and only if |∆⊤| < 2. Therefore, we can use the Iverson bracket

notation to write

♢= [l < 2] :=

1 if l < 2

0 otherwise.

It remains to interpret the REF node. Parameter {Γ 7→ Γ′,∆ 7→ ∆⊥ } tells us that the

interpretation of the REF node should be the same as that of the source node, but with

domains Γ and ∆ replaced with Γ′ and ∆⊥, respectively. Domain Γ′ was created by the

CR rule applied on Γ, so |Γ′|= m−1. Now ∆⊥ = ∆\∆⊤, and |∆⊤|= l, so |∆⊥|= n− l.
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Thus, the interpretation of the REF node is a recursive call to f (m−1,n− l). Therefore,

f (m,n) =
n

∑
l=0

(
n
l

)
[l < 2] f (m−1,n− l) = f (m−1,n)+n f (m−1,n−1). (5.2)

To use this recursive function to compute the model count of the input formula for any

domain sizes, one just needs to find the base cases f (0,n) and f (m,0) for all m,n ∈ N0.

5.5 Empirical Results

We compare CRANE and FORCLIFT [Van den Broeck et al., 2011] on their ability

to count various kinds of functions. This class of instances is chosen because of its

simplicity and ubiquity and the inability of state-of-the-art WFOMC algorithms to solve

many such instances. Note that other WFOMC algorithms—L2C [Kazemi and Poole,

2016] and probabilistic theorem proving [Gogate and Domingos, 2016]—are unable to

solve any of the instances that FORCLIFT fails on. We begin by describing how such

function-counting problems can be expressed in FOL. FORCLIFT then translates these

sentences in FOL to formulas as defined in Definition 5.3.

Let p ∈ Γ×∆ be a predicate. To restrict all relations representable by p to just

functions from Γ to ∆, in FOL one might write

∀X ∈ Γ. ∀Y ∈ ∆. ∀Z ∈ ∆. p(X ,Y )∧ p(X ,Z) =⇒ Y = Z

and

∀X ∈ Γ. ∃Y ∈ ∆. p(X ,Y ). (5.3)

The former sentence says that one element of Γ can map to at most one element of ∆,

and the latter sentence says that each element of Γ must map to at least one element of

∆. One can then add

∀X ,Z ∈ Γ. ∀Y ∈ ∆. p(X ,Y )∧ p(Z,Y ) =⇒ X = Z

to restrict p to injections or

∀Y ∈ ∆. ∃X ∈ Γ. p(X ,Y )

to ensure surjectivity or remove Equation (5.3) to consider partial functions. Lastly, one

can replace all occurrences of ∆ with Γ to model endofunctions (i.e., functions with the

same domain and codomain) instead.
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In our experiments, we consider all sixteen combinations of these properties, i.e.,

injectivity, surjectivity, partiality, and endo-. We run each algorithm once on each of the

sixteen instances.10 FORCLIFT is always run until it terminates; CRANE is run until

either five solutions are found or the search tree reaches height six.11 If successful,

FORCLIFT generates a circuit, and CRANE generates one or more (complete) FCGs. In

both cases, we manually convert the resulting graphs into definitions of functions as

described in Section 5.4. We then assess the complexity of each solution by hand and

pick the best in case CRANE returns several solutions of varying complexities.

Previous work often compares WFOMC algorithms by running them on a few

instances with increasing domain sizes and measuring runtime [Van den Broeck, 2011,

Van den Broeck et al., 2011, Van den Broeck and Davis, 2012]. However, we can

do much better and identify the exact worst-case asymptotic complexity of a solution

produced by either CRANE or FORCLIFT. The asymptotic complexity of a solution

can be determined by considering the total number of arithmetic operations needed to

follow the definitions of constituent functions without recomputing the same quantity

multiple times. In particular, we assume that each function call and binomial coefficient

is computed at most once. We also assume that computing
(n

k

)
takes Θ(nk) time. For

example, the complexity of Equation (5.2) is Θ(mn) since f (m,n) can be computed

by a dynamic programming algorithm that computes f (i, j) for all i = 0, . . . ,m and

j = 0, . . . ,n, taking a constant amount of time on the computation of each f (i, j).

Reasoning in this way, we get the following solutions, where m is the size of domain

Γ, and n is the size of domain ∆:

1. Θ(m) solution for counting Γ→ Γ functions:

f (m) =

(
−1+

m

∑
l=0

(
m
l

)
[l < 2]

)m

= mm.

2. Θ(m3 +n3) solution for counting Γ→ ∆ surjections:

f (m,n) =
m

∑
l=0

(
m
l

)
(−1)m−l

n

∑
k=0

(
n
k

)
(−1)n−k

(
k

∑
j=0

(
k
j

)
[ j < 2]

)l

=
m

∑
l=0

(
m
l

)
(−1)m−l

n

∑
k=0

(
n
k

)
(−1)n−k(k+1)l.

10While domain sizes have to be specified as part of the input, they are immaterial to the search
procedure.

11The search tree has a high branching factor, so exploring all nodes at depth five takes at most a few
seconds, whereas doing the same for depth six can be computationally infeasible in some cases.
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3. Θ(m3) solution for counting Γ→ Γ surjections:

f (m) =
m

∑
l=0

(
m
l

)
(−1)m−l

m

∑
k=0

(
m
k

)
(−1)m−k

(
k

∑
j=0

(
k
j

)
[ j < 2]

)l

=
m

∑
l=0

(
m
l

)
(−1)m−l

m

∑
k=0

(
m
k

)
(−1)m−k(k+1)l.

4. Θ(mn) solution for counting Γ→∆ injections and partial injections (with different

base cases):

f (m,n) =
m

∑
l=0

(
m
l

)
[l < 2] f (m− l,n−1) = f (m,n−1)+m f (m−1,n−1).

5. Θ(m3) solution for counting Γ→ Γ injections:

f (m) =
m

∑
l=0

(
m
l

)
(−1)m−lg(m, l);

g(m, l) =
l

∑
k=0

(
l
k

)
[k < 2]g(m−1, l− k) = g(m−1, l)+ lg(m−1, l−1).

6. Θ(m) solution for counting Γ↣↠ ∆ bijections:

f (m,n) = m f (m−1,n−1).

These results are summarised in Table 5.1, where we compare the solutions found by

both algorithms to the best known ways of computing the same quantities. The best-

known asymptotic complexity for computing total surjections is by Earnest [2018]. All

other best-known complexity results are inferred from the formulas and programs on the

on-line encyclopedia of integer sequences [OEIS Foundation Inc., 2022]. On instances

that could already be solved by FORCLIFT, the two algorithms perform equally well.

However, CRANE can also solve all but one instances that FORCLIFT fails on in at most

cubic time.

5.6 Conclusion and Future Work

In this chapter, we showed how a state-of-the-art (W)FOMC algorithm can be em-

powered by generalising domain recursion and adding support for cycles in the graph

that encodes a solution. To construct such graphs, CRANE supplements FORCLIFT [Van

den Broeck et al., 2011] with three new compilation rules and a hybrid search algorithm.
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Our experiments revealed a range of counting problems that are liftable to CRANE but

not to any other (W)FOMC algorithm. The common thread across these newly liftable

problems is (partial) injectivity. Thus, we can formulate the following conjecture.

Conjecture 5.1. Let IFO2 be the class of formulas in FOL that contain clauses with at

most two variables as well as any number of copies of

(∀X ∈ Γ. ∀Y ∈ ∆. ∀Z ∈ ∆. Y ̸= Z =⇒ ¬p(X ,Y )∨¬p(X ,Z))∧

(∀X ∈ Γ. ∀Y ∈ ∆. ∀Z ∈ Γ. X ̸= Z =⇒ ¬p(X ,Y )∨¬p(Z,Y ))

for some predicate p and domains Γ and ∆. Then IFO2 is liftable by CRANE.

Recall that C2 is the class of formulas with counting quantifiers and at most two

variables. C2 was recently shown to be liftable [Kuzelka, 2021] but without providing a

usable (W)FOMC algorithm. Since the tasks of counting injections and bijections fall

into the C2 fragment, we can conjecture the following.

Conjecture 5.2. C2 is liftable by CRANE by either reformulating formulas in C2 to

avoid counting quantifiers or extending CRANE to support them.

The most important direction for future work is to fully automate this new way of

computing the (W)FOMC of a formula. First, we need an algorithm that transforms

FCGs into definitions of functions. Formalising this process would also allow us to

prove the correctness of the new compilation rules in constructing FCGs that indeed

compute the right WMC. Second, these definitions must be simplified before they can

be used, perhaps by a computer algebra system. Third, most importantly, we need a way

to find the base cases for the recursive definitions provided by CRANE. Fourth, since

the first solution found by CRANE is not always optimal in terms of its complexity, an

automated way to determine the asymptotic complexity of a solution would be helpful as

well. Achieving these goals would make CRANE capable of automatically constructing

efficient ways to compute a function (e.g., a sequence) of interest. In addition to the

potential impact on areas of artificial intelligence (AI) such as statistical relational AI

[De Raedt et al., 2016], CRANE could be beneficial to research in combinatorics as well

[Barvı́nek et al., 2021].

Another important strand for future work is in developing an algorithm that learns

FCGs from data similarly to the way FORCLIFT has been utilised in learning Markov

logic networks [Van den Broeck et al., 2013, Van Haaren et al., 2016]. One could

also consider whether some of the many recent applications of circuits are suitable
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for FCGs as well. These applications include the verification and explainability of

neural networks [Darwiche, 2020], causal inference [Darwiche, 2022], computing the

expectations of kernel functions [Li et al., 2021], and variational inference in discrete

graphical models [Shih and Ermon, 2020].
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Algorithm 5.3: The compilation rule for REF nodes.
Input: formula φ, cache C

Output: a set of chips

1 forall pairs of formulas and nodes (ψ,v) ∈C(#φ) do
2 ρ← identifyRecursion(φ, ψ);

3 if ρ ̸= null then return {(REFρ(v),⟨⟩)};

4 return /0;

5 Function identifyRecursion(formula φ, formula ψ, map ρ = /0):
6 if |φ| ̸= |ψ| or #φ ̸= #ψ then return null;

7 if φ = /0 then return ρ;

8 foreach clause c ∈ ψ do
9 foreach clause d ∈ φ s.t. #d = #c do

10 forall (β,γ) ∈ generateMaps(c, d, ρ) s.t. c[β,γ] = d do
11 ρ′← identifyRecursion(φ\{d }, ψ\{c}, ρ∪ γ);

12 if ρ′ ̸= null then return ρ′;

13 return null;

14 Function generateMaps(clause c, clause d, map ρ):
15 foreach bijection β : Vars(c)↣↠ Vars(d) do
16 γ← constructDomainMap(Vars(c), δc, δd , β, ρ);

17 if γ ̸= null then yield (β,γ);

18 Function constructDomainMap(set of variables V , maps δc, δd , β, ρ):
19 γ← /0;

20 foreach variable X ∈V do
21 if δc(X) ∈ dom(ρ) and ρ(δc(X)) ̸= δd(β(X)) then return null;

22 if δc(X) ̸∈ dom(γ) then γ← γ∪{δc(X) 7→ δd(β(X))};
23 else if γ(δc(X)) ̸= δd(β(X)) then return null;

24 return γ;
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Algorithm 5.4: The (main part of the) search algorithm.
Input: a formula φ0

Result: all found FCGs for φ0 are in set S

1 S← /0;

2 (G0,L0,C0)← applyGreedyRules(φ0, /0);

3 if L0 = ⟨⟩ then S←{G0 };
4 else
5 q← a empty queue of states;

6 q.put((G0,L0,C0));

7 while not q.empty() do
8 foreach state (G,L,C) ∈ applyAllRules(q.get()) do
9 if L = ⟨⟩ then S← S∪{G};

10 else q.put((G,L,C));

Algorithm 5.5: The function for applying non-greedy rules.

1 Function applyAllRules(state s = (G,L,C)):
2 (G′,L′,C′)← a copy of s;

3 φ : T ← L; /* separate the first formula from the rest */

4 foreach non-greedy rule r do
5 foreach chip (G′′,L′′) ∈ r(φ) do
6 if G′′ = ⋆ then yield applyAllRules((G′,L′′++T,C′));

7 else
8 C′← updCache(C′, φ, G′′);

9 (G′′,L′′,C′)← applyGreedyRulesToFormulas(G′′, L′′, C′);

10 yield (mergeFcgs(G′, G′′),C′,L′′++T );

11 (G′,L′,C′)← a copy of s;
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Algorithm 5.6: Helper functions that apply greedy rules to a) a single formula

and b) all uncompiled formulas in a state.

1 Function applyGreedyRules(formula φ, cache C):
2 foreach greedy rule r s.t. r(φ) ̸= /0 do
3 (G,L)← the only chip in r(φ);

4 if G = ⋆ then return applyGreedyRules(the formula in L, C);

5 return applyGreedyRulesToFormulas(G, L, updCache(C, φ, G));

6 return (⋆,⟨φ⟩,C);

7 Function applyGreedyRulesToFormulas((V,s,N+,τ), list L, cache C):
8 if L = ⟨⟩ then return ((V,s,N+,τ),L,C);

9 L′← ⟨⟩;
10 foreach formula φ ∈ L do
11 (G′,L′′,C)← applyGreedyRules(φ, C);

12 L′← L′++L′′;

13 if G′ = (V ′,s′,N′,τ′) ̸= ⋆ then
14 (V,N+,τ)← (V ∪V ′,N+∪N′,τ∪ τ′);

15 replace the corresponding ⋆ in N+(s) with s′;

16 return ((V,s,N+,τ),L′,C);
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Algorithm 5.7: Helper functions for updating a cache and merging FCGs.

1 Function updCache(cache C, formula φ, FCG (V,s,N+,τ)):
2 if τ(s) = REF then return C;

3 if #φ ̸∈ dom(C) then return C∪{#φ 7→ (φ,s)};
4 if there is no (φ′,v) ∈C(#φ) s.t. v = s then C(#φ)← ⟨(φ,s)⟩++C(#φ);

5 return C;

6 Function mergeFcgs(G = (V,s,N+,τ), G′ = (V ′,s′,N′,τ′), r = s):
7 if G = ⋆ then return G′;

8 if τ(r) = REF then return null;

9 foreach t ∈ N+(r) do
10 if τ(t) = ⋆ then
11 replace t with s′ in N+(r);

12 return (V ∪V ′,s,N+∪N′,τ∪ τ′);

13 G′′← mergeFcgs(G, G′, t);

14 if G′′ ̸= null then return G′′;

15 return null;
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Function Class Asymptotic Complexity of Counting

Partial Endo- Class Best Known With FORCLIFT With CRANE

✓/✗ ✓/✗ Functions logm m m

✗ ✗

Surjections

n logm m3 +n3 m3 +n3

✗ ✓ m logm m3 m3

✓ ✗ Same as injections from ∆ to Γ

✓ ✓ Same as endo-injections

✗ ✗ m — mn

✗ ✓ m — m3

✓ ✗ min{m,n}2 — mn

✓ ✓

Injections

m2 — —

✗ ✗

Bijections

m — m

✗ ✓
Same as (partial) (endo-)injections

✓ ✓/✗

Table 5.1: The worst-case complexity of counting various types of functions. All asymp-

totic complexities are in Θ(·). A dash means that the algorithm was not able to find a

solution.
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Chapter 6

Generating Random Logic Programs
Using Constraint Programming

6.1 Introduction

Probabilistic logic programming languages such as the independent choice logic [Poole,

1997], PRISM [Sato and Kameya, 1997], and ProbLog [De Raedt et al., 2007] are prom-

ising frameworks for codifying complex statistical relational models whose inference

procedures often rely on WMC [Fierens et al., 2011, 2015, Vlasselaer et al., 2016a].

However, if one were to survey the literature, one often finds that an inference algorithm

is only tested on a small number (1–4) of data sets [Bruynooghe et al., 2010, Kimmig

et al., 2011, Vlasselaer et al., 2015], originating from areas such as social networks,

citation patterns, and biological data. But how confident can we be that an algorithm

works well if it is only tested on a few problems?

About thirty years ago, SAT solving technology was dealing with a similar lack

of clarity [Selman et al., 1996]. This changed with the study of generating random

SAT instances against different input parameters (e.g., clause length and the total

number of variables) to better understand the behaviour of algorithms and their ability

to solve random synthetic problems. Unfortunately, when it comes to generating

random logic programs, all approaches so far focused exclusively on propositional

programs [Amendola et al., 2017, 2020, Wang et al., 2015, Zhao and Lin, 2003], often

with severely limiting conditions such as two-literal clauses [Namasivayam, 2009,

Namasivayam and Truszczynski, 2009] or clauses of the form a← ¬b [Wen et al.,

2016].

In this work (Sections 6.3–6.5), we introduce a constraint-based representation

99
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for logic programs based on simple parameters that describe the program’s size, what

predicates and constants it uses, etc. This representation takes the form of a constraint

satisfaction problem (CSP), i.e., a set of discrete variables and restrictions on what

values they can take. Every solution to this problem (as output by a constraint solver)

directly translates into a logic program. One can either output all (sufficiently small)

programs that satisfy the given conditions or use random value ordering heuristics and

restarts to generate random programs. For sampling from a uniform distribution, the

CSP can be transformed into a belief network [Dechter et al., 2002]. In fact, the same

model can generate both probabilistic programs in the syntax of ProbLog [De Raedt

et al., 2007] and non-probabilistic Prolog programs. To the best of our knowledge, this

is the first work that

• addresses the problem of generating random logic programs in its full generality

(i.e., including first-order clauses with variables), and

• compares and evaluates inference algorithms for probabilistic logic programs on

more than a handful of instances.

A major advantage of a constraint-based approach is the ability to add additional

constraints as needed, and to do that efficiently (compared to generate-and-test ap-

proaches). As an example of this, in Section 6.7 we develop a custom constraint that,

given two predicates p and q, ensures that any ground atom with predicate p is inde-

pendent of any ground atom with predicate q. In this way, we can easily regulate the

independence structure of the underlying probability distribution. In Section 6.6 we also

present a combinatorial argument for correctness that counts the number of programs

that the model produces for various parameter values. We end the chapter with some

example programs in Section 6.8 and two experimental results in Section 6.9. The first

experiment investigates how the constraint model scales when tasked with producing

more complex programs, and the second experiment shows how the model can be used

to evaluate and compare probabilistic inference algorithms.

6.2 Preliminaries

We begin by outlining some bespoke notation that will be useful in describing arrays

of constraint variables as well as the overall structure of our model. Let □ denote the

absent/disabled value of an optional variable [Mears et al., 2014]. We write a[b] ∈ c to

mean that a is an array of variables of length b such that each element of a has domain
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c. For example, the constraint variables (qi)
n
i=1 used in Example 2.6 for the n queens

problem can be written as q[n] ∈ {1, . . . ,n}. Similarly, we write c : a[b] to denote an

array a of length b such that each element of a has type c. We assume that all arrays

start with index zero. All constraint variables that we use in this chapter are integer or

set variables, however, if an integer refers to a logical construct (e.g., a logical variable

or a constant), we will make no distinction between the two. We say that a constraint

variable is (fully) determined if, in the course of constraint solving, all but one possible

domain value is dismissed.

Parameters of the model. First, we define some sets and lists of primitives: a list of

predicates P , a list of their corresponding arities A (so |A | = |P |), a set of variables V ,

and a set of constants C . Either V or C can be empty, but we assume that |C |+ |V |> 0.

Similarly, the model supports zero-arity predicates but requires at least one predicate to

have non-zero arity. For notational convenience, we also set MA = maxA . Next, we

need a measure of how complex a body of a clause can be. As we represent each body

by a tree (see Section 6.4), we set MN ≥ 1 to be the maximum number of nodes in the

tree representation of any clause. We also set MC to be the maximum number of clauses

in a program. We must have that MC ≥ |P | because we require each predicate to have

at least one clause that defines it. The model supports enforcing predicate independence

(see Section 6.7), so a set of independent pairs of predicates is another parameter.

Since this model can generate probabilistic as well as non-probabilistic programs, each

clause is paired with a probability which is randomly selected from a given list—our

last parameter. For generating non-probabilistic programs, one can set this list to ⟨1⟩.
Finally, we define T = {¬,∧,∨,⊤} as the set of tokens that (together with atoms)

form a clause. All decision variables of the model can now be divided into 2×MC

separate groups, treating the body and the head of each clause separately. We say that

the variables are contained in two arrays: Body : bodies[MC] and Head : heads[MC].

6.3 Heads of Clauses

In Sections 6.3 and 6.4, we define clauses (i.e., their heads and bodies) using constraint

programming terms. We define the head of a clause as a predicate ∈ P ∪{□} and

arguments[MA] ∈ C ∪V ∪{□}. Here, we use □ to denote either a disabled clause

that we choose not to use or disabled arguments if the arity of the predicate is less

than MA . The reason why we need a separate value for the latter (i.e., why it is
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not enough to fix disabled arguments to a single already-existing value) will become

clear in Section 6.5. This predicate variable has a corresponding arity that depends

on the predicate. We can define arity ∈ [0,MA ] as the arity of the predicate if

predicate ∈ P and zero otherwise using the table constraint [Mairy et al., 2015]. This

constraint uses a set of pairs of the form (p,a), where p ranges over all possible values

of the predicate, and a is either the arity of predicate p or zero. Having defined arity,

we can now fix the superfluous arguments.

Constraint 6.1. For i = 0, . . . ,MA −1, arguments[i] =□ ⇐⇒ i≥ arity.

We also add a constraint that each predicate should get at least one clause.

Constraint 6.2. Let P = {h.predicate | h ∈ heads} be a multiset. Then

nValues(P) =

|P | if count(□,P) = 0

|P |+1 otherwise,

where nValues(P) counts the number of unique values in P, and count(□,P) counts

how many times □ appears in P.

Finally, we want to disable duplicate clauses but with one exception: there may

be more than one disabled clause, i.e., a clause with head predicate=□. Assuming

a lexicographic order over entire clauses such that □ > p for all p ∈ P and the head

predicate is the ‘first digit’ of this representation, the following constraint disables

duplicates as well as orders the clauses.

Constraint 6.3. For i = 1, . . . ,MC −1, if heads[i].predicate ̸=□, then

(heads[i−1],bodies[i−1])< (heads[i],bodies[i]).

6.4 Bodies of Clauses

As was briefly mentioned before, the body of a clause is represented by a tree. It has

two parts. First, there is the structure[MN ] ∈ [0,MN −1] array that encodes the

structure of the tree using the following two rules: structure[i] = i means that the

ith node is a root, and structure[i] = j (for j ̸= i) means that the ith node’s parent is

node j. The second part is the array Node : values[MN ] such that values[i] holds

the value of the ith node, i.e., a representation of the atom or logical operator.
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We can use the tree constraint [Fages and Lorca, 2011] to forbid cycles in the

structure array and simultaneously define numTrees ∈ {1, . . . ,MN } to count the

number of trees. We will view the tree rooted at the zeroth node as the main tree and

restrict all other trees to single nodes. For this to work, we need to make sure that

the zeroth node is indeed a root, i.e., fix structure[0] = 0. For convenience, we also

define numNodes ∈ {1, . . . ,MN } to count the number of nodes in the main tree. We

define it as numNodes= MN −numTrees+1.

Example 6.1. Let MN = 8. Then ¬p(X)∨ (q(X)∧ p(X)) can be encoded as:

structure= [0, 0, 0, 1, 2, 2, 6, 7], numNodes= 6,

values= [∨,¬,∧, p(X),q(X), p(X),⊤,⊤], numTrees= 3.

Here, ⊤ is the value we use for the remaining one-node trees. The elements of

the values array are nodes. A node has a name ∈ T ∪P and arguments[MA] ∈
V ∪C ∪{□}. The node’s arity can then be defined in the same way as in Section 6.3.

Furthermore, we can use Constraint 6.1 to again disable the extra arguments.

Example 6.2. Let MA = 2, X ∈V , and let p be a predicate with arity 1. Then the node

representing atom p(X) has: name= p, arguments= [X ,□], arity= 1.

We need to constrain the forest represented by the structure array together with

its values to eliminate symmetries and adhere to our desired format. First, we can

recognize that the order of the elements in the structure array does not matter, i.e.,

the structure is only defined by how the elements link to each other, so we can add a

constraint for sorting the structure array. Next, since we already have a variable that

counts the number of nodes in the main tree, we can fix the structure and the values of

the remaining trees to some constant values.

Constraint 6.4. For i = 1, . . . ,MN −1, if i < numNodes, then

structure[i] = i, and values[i].name=⊤,

else structure[i]< i.

The second part of this constraint states that every node in the main tree except the

zeroth node cannot be a root and must have its parent located to the left of itself. Next,

we classify all nodes into three classes: predicate (or empty) nodes, negation nodes,

and conjunction/disjunction nodes based on the number of children (zero, one, and two,

respectively).
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Constraint 6.5. For i = 0, . . . ,MN −1, let Ci be the number of times i appears in the

structure array with index greater than i. Then

Ci = 0 ⇐⇒ values[i].name ∈ P ∪{⊤},

Ci = 1 ⇐⇒ values[i].name= ¬,

Ci > 1 ⇐⇒ values[i].name ∈ {∧,∨}.

The value ⊤ serves a twofold purpose: it is used as the fixed value for nodes outside

the main tree, and, when located at the zeroth node, it can represent a clause with an

empty body. Thus, we can say that only root nodes can have ⊤ as the value.

Constraint 6.6. For i = 0, . . . ,MN −1,

structure[i] ̸= i =⇒ values[i].name ̸=⊤.

Finally, we add a way to disable a clause by setting its head predicate to □.

Constraint 6.7. For i = 0, . . . ,MC −1, if heads[i].predicate=□, then

bodies[i].numNodes= 1, and bodies[i].values[0].name=⊤.

6.5 Variable Symmetry Breaking

Ideally, we want to avoid generating programs that are equivalent in the sense that they

produce the same answers to all queries. Even more importantly, we want to avoid

generating multiple internal representations that ultimately result in the same program.

This is the purpose of symmetry-breaking constraints, another important benefit of

which is that the constraint solving task becomes easier [Walsh, 2006]. Given any

clause, we can permute the variables in that clause without changing the meaning of the

clause or the entire program. Thus, we want to fix the order of variables. Informally,

we can say that variable X goes before variable Y if the first occurrence of X in either

the head or the body of the clause is before the first occurrence of Y . Note that the

constraints described in this section only make sense if |V |> 1 and that all definitions

and constraints here are on a per-clause basis.

Definition 6.1. Let N = MA × (MN + 1), and let terms[N] ∈ C ∪V ∪ {□} be a

flattened array of all arguments in a particular clause. Then we can use a channeling

constraint to define occ[|C |+ |V |+ 1] as an array of subsets of {0, . . . ,N− 1} such

that for all i = 0, . . . ,N−1, and t ∈ C ∪V ∪{□},

i ∈ occ[t] ⇐⇒ terms[i] = t.
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Next, we introduce an array that holds the first occurrence of each variable.

Definition 6.2. Let intros[|V |] ∈ {0, . . . ,N } be such that for v ∈ V ,

intros[v] =

1+minocc[v] if occ[v] ̸= /0

0 otherwise.

Here, a value of zero means that the variable does not occur in the clause (this

choice is motivated by subsequent constraints). As a consequence, all other indices are

shifted by one. Having set this up, we can now eliminate variable symmetries simply by

sorting intros. In other words, we constrain the model so that the variable listed first

(in whatever order V is presented in) has to occur first in our representation of a clause.

Example 6.3. Let C = /0, V = {X ,Y,Z }, MA = 2, MN = 3, and consider the clause

sibling(X ,Y )← parent(X ,Z)∧parent(Y,Z). Then

terms= [X ,Y,□,□,X ,Z,Y,Z],

occ= [{0,4},{1,6},{5,7},{2,3}],

intros= [0,1,5],

where the □’s correspond to the conjunction node.

We end the section with several redundant constraints that make the CSP easier

to solve. First, we can state that the positions occupied by different terms must be

different.

Constraint 6.8. For u ̸= v ∈ C ∪V ∪{□}, occ[u]∩occ[v] = /0.

The reason why we use zero to represent an unused variable is so that we could

now use the ‘all different except zero’ constraint for the intros array. We can also add

another link between intros and occ that essentially says that the smallest element of

a set is an element of the set.

Constraint 6.9. For v ∈ V , intros[v] ̸= 0 ⇐⇒ intros[v]−1 ∈ occ[v].

Finally, we define an auxiliary set variable to act as a set of possible values that

intros can take. Let potentials⊆ {0, . . . ,N } be such that for v ∈ V , intros[v] ∈
potentials. Using this new variable, we can add a constraint saying that non-predicate

nodes in the tree representation of a clause cannot have variables as arguments.

Constraint 6.10. For i = 0, . . . ,MN −1, let

S = {MA × (i+1)+ j+1 | j = 0, . . . ,MA −1}.

If values[i].name ̸∈ P , then potentials∩S = /0.
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6.6 Counting Programs

To demonstrate the correctness of the model, this section derives combinatorial expres-

sions for counting the number of programs with up to MC clauses and up to MN nodes

per clause, and arbitrary P , A , V , and C . Being able to establish two ways to generate

the same sequence of numbers (i.e., numbers of programs with certain properties and

parameters) allows us to gain confidence that the constraint model accurately matches

our intentions. For this section, we introduce the term total arity of a body of a clause

to refer to the sum total of arities of all predicates in the body.

We will first consider clauses with gaps, i.e., without taking variables and constants

into account. Let T (n,a) denote the number of possible clause bodies with n nodes

and total arity a. Then T (1,a) is the number of predicates in P with arity a, and the

following recursive definition can be applied for n > 1:

T (n,a) = T (n−1,a)+2 ∑
c1+···+ck=n−1,

2≤k≤ a
minA ,

ci≥1 for all i

∑
d1+···+dk=a,

di≥minA for all i

k

∏
i=1

T (ci,di).

The first term here represents negation, i.e., negating a formula consumes one node

but otherwise leaves the task unchanged. If the first operation is not a negation, then it

must be either conjunction or disjunction (hence the coefficient ‘2’). In the first sum, k

represents the number of children of the root node, and each ci is the number of nodes

dedicated to child i. Thus, the first sum iterates over all possible ways to partition the

remaining n− 1 nodes. Similarly, the second sum considers every possible way to

partition the total arity a across the k children nodes. We can then count the number of

possible clause bodies with total arity a (and any number of nodes) as

C(a) =

1 if a = 0

∑
MN
n=1 T (n,a) otherwise.

The number of ways to select n terms is

P(n) = |C |n + ∑
1≤k≤|V |,

0=s0<s1<···<sk<sk+1=n+1

k

∏
i=0

(|C |+ i)si+1−si−1.

The first term is the number of ways to select n constants. The parameter k is the number

of variables used in the clause, and s1, . . . ,sk mark the first occurrence of each variable.

For each gap between any two introductions (or before the first introduction, or after the
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last introduction), we have si+1− si−1 spaces to be filled with any of the |C | constants

or any of the i already-introduced variables.

Let us order the elements of P , and let ai be the arity of the ith predicate. The

number of programs is then:

∑
∑
|P |
i=1 hi=n,

|P |≤n≤MC ,
hi≥1 for all i

|P |

∏
i=1

(
∑

MA×MN
a=0 C(a)P(a+ai)

hi

)
, (6.1)

Here, we sum over all ways to distribute |P | ≤ n≤MC clauses among |P | predicates

so that each predicate gets at least one clause. For each predicate, we can then count

the number of ways to select its clauses out of all possible clauses. The number of

possible clauses can be computed by considering each possible arity a, and multiplying

the number of ‘unfinished’ clauses C(a) by the number of ways to select the required

a+ai terms in the body and the head of the clause. Finally, we compare the numbers

produced by Equation (6.1) with the numbers of programs generated by our model in

1032 different scenarios, thus showing that the combinatorial description developed in

this section matches the model’s behaviour.

6.7 Stratification and Independence

Stratification is a condition necessary for probabilistic logic programs [Mantadelis and

Rocha, 2017] and often enforced on logic programs [Bidoit, 1991] that helps to ensure

a unique answer to every query. This is achieved by restricting the use of negation so

that any program P can be partitioned into a sequence of programs P =
⊔n

i=1 Pi such

that, for all i, the negative literals in Pi can only refer to predicates defined in P j for

j ≤ i [Bidoit, 1991].

Independence, on the other hand, is defined on a pair of predicates (say, p,q∈P ) and

can be interpreted in two ways. First, if p and q are independent, then any ground atom

of p is independent of any ground atom of q in the underlying probability distribution

of the probabilistic program. Second, the part of the program needed to fully define p is

disjoint from the part of the program needed to define q.

These two seemingly disparate concepts can be defined using the same building

block, i.e., a predicate dependency graph. Let P be a probabilistic logic program with

its set of predicates P . Its (predicate) dependency graph is a directed graph GP with

elements of P as nodes and an edge between p,q ∈ P if there is a clause in P with q
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parent

mother

sibling

father

+
+

−

Figure 6.1: The predicate dependency graph of the program from Example 6.4. Positive

edges are labelled with ‘+’, and negative edges with ‘−’.

as the head and p mentioned in the body. We say that the edge is negative if there exists

a clause with q as the head and at least one instance of p at the body such that the path

from the root to the p node in the tree representation of the clause passes through at

least one negation node; otherwise, it is positive. We say that P (or GP ) has a negative

cycle if GP has a cycle with at least one negative edge. A program P is stratified if

GP has no negative cycles.1 Thus a simple entailment algorithm for stratification can

be constructed by selecting all clauses, all predicates of which are fully determined, and

looking for negative cycles in the dependency graph constructed based on those clauses

using an algorithm such as Bellman-Ford.

For any predicate p ∈ P , the set of dependencies of p is the smallest set Dp such

that p ∈ Dp, and, for every q ∈ Dp, all direct predecessors of q in GP are in Dp. Two

predicates p and q are independent if Dp∩Dq = /0.

Example 6.4. Consider the following (fragment of a) program:

sibling(X ,Y )← parent(X ,Z)∧parent(Y,Z),

father(X ,Y )← parent(X ,Y )∧¬mother(X ,Y ). (6.2)

Its predicate dependency graph is in Figure 6.1. Because of the negation in Clause 6.2,

the edge from mother to father is negative, while the other two edges are positive. The

dependencies of each predicate are:

Dparent = {parent}, Dsibling = {sibling,parent},

Dmother = {mother}, Dfather = { father,mother,parent}.

Hence, we have two pairs of independent predicates, i.e., mother is independent of

parent and sibling.

Since the definition of independence relies on the dependency graph, we can rep-

resent this graph as an adjacency matrix constructed as part of the model. Let A
1This definition is an extension of a well-known result for logic programs [Balbin et al., 1991] to

probabilistic logic programs with arbitrary complex clause bodies.
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Edges Name Notation

0 Determined ∆(r)

1 Almost determined Γ(r,s, t)

> 1 Undetermined ϒ(r)

Table 6.1: Types of (potential) dependencies of a predicate p based on the number of

undetermined edges on the path from the dependency to p.

Algorithm 6.1: Entailment for independence.
Data: predicates p1, p2

1 D←{(d1,d2) ∈ deps(p1, 1)×deps(p2, 1) | d1.predicate = d2.predicate};
2 if D = /0 then return true;

3 if ∃(∆ ,∆ ) ∈ D then return false else return undefined;

be a |P | × |P | binary matrix defined element-wise by stating that A[i][ j] = 0 if and

only if, for all k = 0, . . . ,MC −1, either heads[k].predicate ̸= j or i ̸∈ {a.name | a ∈
bodies[k].values}.

Given a partially-solved model with its predicate dependency graph, let us pick an

arbitrary path from q to p (for some p,q ∈ P ) that consists of determined edges that

are denoted by 1 in A and potential/undetermined edges that are denoted by {0,1}.
Each such path characterises a (potential) dependency q for p. We classify all such

dependencies into three classes depending on the number of undetermined edges on

the path. These classes are outlined in Table 6.1, where r represents the dependency

predicate q, and, in the case of Γ , (s, t) ∈ P 2 is the one undetermined edge on the path.

For a dependency d—regardless of its exact type—we will refer to its predicate r as

d.predicate. In describing the algorithms, we will use ‘ ’ to replace any of r, s, t in

situations where the name is unimportant.

Each entailment algorithm returns one out of three values: true if the constraint

is guaranteed to hold, false if the constraint is violated, and undefined if whether

the constraint will be satisfied or not depends on the future decisions made by the

solver. Algorithm 6.1 outlines a simple entailment algorithm for the independence of

two predicates p1 and p2. First, we separately calculate all dependencies of p1 and p2

and look at the set D of dependencies that p1 and p2 have in common. If there are none,

then the predicates are clearly independent. If they have a dependency in common that

is already fully determined (∆) for both predicates, then they cannot be independent.
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Algorithm 6.2: Propagation for independence.
Data: predicates p1, p2; adjacency matrix A

1 for (d1,d2) ∈ deps(p1, 0)×deps(p2, 0) s.t. d1.predicate = d2.predicate do
2 if d1 is ∆( ) and d2 is ∆( ) then fail();

3 if {d1,d2 }= {∆( ),Γ( ,s, t)} then A[s][t].removeValue(1);

Algorithm 6.3: Dependencies of a predicate.
Data: adjacency matrix A

1 Function deps(predicate p, flag allDeps):
2 D←{∆(p)};
3 while true do
4 D′← /0;

5 foreach dependency d ∈ D and predicate q ∈ P do
6 edge← A[q][d.predicate] = {1};
7 if edge and d is ∆( ) then D′← D′∪{∆(q)};
8 else if edge and d is Γ( ,s, t) then D′← D′∪{Γ(q,s, t)};
9 else if |A[q][d.predicate]|> 1 and d is ∆(r) then

10 D′← D′∪{Γ(q,q,r)};
11 else if |A[q][d.predicate]|> 1 and allDeps then D′← D′∪{ϒ(q)};

12 if D′ = D then return D else D← D′;

Otherwise, we return undefined.

Propagation algorithms have two goals: causing a contradiction (failing) in situations

where the corresponding entailment algorithm would return false, and eliminating

values from domains of variables that are guaranteed to cause a contradiction. Al-

gorithm 6.2 does the former on line 2. Furthermore, for any dependency shared between

predicates p1 and p2, if it is determined (∆) for one predicate and almost determined (Γ)

for another, then the edge that prevents the Γ from becoming a ∆ cannot exist—line 3

handles this possibility.

The function deps in Algorithm 6.3 calculates Dp for any predicate p. It has two

versions: deps(p,1) returns all dependencies, while deps(p,0) returns only determined

and almost-determined dependencies. It starts by establishing the predicate p itself as a

dependency and continues to add dependencies of dependencies until the set D stabilises.

For each dependency d ∈ D, we look at the in-links of d in the predicate dependency
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graph. If the edge from some predicate q to d.predicate is fully determined and d is

determined, then q is another determined dependency of p. If the edge is determined but

d is almost determined, then q is an almost-determined dependency. The same outcome

applies if d is fully determined but the edge is undetermined. Finally, if we are interested

in collecting all dependencies regardless of their status, then q is a dependency of p

as long as the edge from q to d.predicate is possible. Note that if there are multiple

paths in the dependency graph from q to p, Algorithm 6.3 could include q once for each

possible type (∆, ϒ, and Γ), but Algorithms 6.1 and 6.2 would still work as intended.

Example 6.5. Consider this partially determined (fragment of a) program:

□(X ,Y )← parent(X ,Z)∧parent(Y,Z),

father(X ,Y )← parent(X ,Y )∧¬mother(X ,Y ),

where □ indicates an unknown predicate with domain

D□ = { father,mother,parent,sibling}.

The predicate dependency graph is pictured in Figure 6.2. Suppose we have a constraint

that mother and parent must be independent. The lists of potential dependencies for

both predicates are:

Dmother = {∆(mother),Γ(parent,parent,mother)},

Dparent = {∆(parent)}.

An entailment check at this stage would produce undefined, but propagation replaces

the boxed value in Figure 6.2a with zero, eliminating the potential edge from parent to

mother. This also eliminates mother from D□, and this is enough to make Algorithm 6.1

return true.

6.8 Example Programs

In this section, we provide examples of probabilistic logic programs generated by our

constraint model. In all cases, we use

{0.1,0.2, . . . ,0.9,1,1,1,1,1}

as the multiset of probabilities. Each clause is written on a separate line and ends with

a full stop. The head and the body of each clause are separated with :- (instead of
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


father 0 0 0 0

mother 1 0 0 0

parent 1 { 0, 1 } {0,1} {0,1}
sibling 0 0 0 0

(a) The adjacency matrix of the graph. The boxed value

is the decision variable that will be propagated by Al-

gorithm 6.2.

parent

mother

sibling

father

(b) A drawing of the graph. Dashed

edges are undetermined—they may

or may not exist.

Figure 6.2: The predicate dependency graph of Example 6.5.

←). The probability of each clause is prepended to the clause, using :: as a separator.

Probabilities equal to one and empty bodies of clauses can be omitted. Conjunction,

disjunction, and negation are denoted by commas, semicolons, and ‘\+’, respectively.

Parentheses are used to demonstrate precedence, although many of them are redundant.

By setting P = [p], A = [1], V = {X}, C = /0, MN = 4, and MC = 1, we get fifteen

one-line programs, six of which are without negative cycles (as highlighted below).

Only the last program has no cycles at all.

1. 0.5 :: p(X) :- (\+(p(X))), (p(X)).

2. 0.8 :: p(X) :- (\+(p(X))); (p(X)).

3. 0.8 :: p(X) :- (p(X)); (p(X)).

4. 0.7 :: p(X) :- (p(X)), (p(X)).

5. 0.6 :: p(X) :- (p(X)), (\+(p(X))).

6. p(X) :- (p(X)); (\+(p(X))).

7. 0.1 :: p(X) :- (p(X)); (p(X)); (p(X)).

8. 0.8 :: p(X) :- (p(X)), (p(X)), (p(X)).

9. p(X) :- \+(p(X)).

10. 0.1 :: p(X) :- \+(\+(p(X))).

11. p(X) :- \+((p(X)); (p(X))).

12. 0.4 :: p(X) :- \+((p(X)), (p(X))).
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13. 0.4 :: p(X) :- \+(\+(\+(p(X)))).

14. 0.7 :: p(X) :- p(X).

15. p(X).

Note that:

• A program such as Program 14, because of its cyclic definition, defines a predicate

that has probability zero across all constants. This can more easily be seen as

solving equation 0.7x = x.

• Programs 10 and 14 are not equivalent (i.e., double negation does not cancel out)

because Program 10 has a negative cycle and is thus considered to be ill-defined.

To demonstrate variable symmetry reduction in action, we set P = [p], A = [3],

V = {X,Y,Z}, C = /0, MN = 1, MC = 1, and forbid all cycles. This gives us the

following five programs:

• 0.8 :: p(Z, Z, Z).

• p(Y, Y, Z).

• p(Y, Z, Z).

• p(Y, Z, Y).

• 0.1 :: p(X, Y, Z).

This is one of many possible programs with P = [p,q,r], A = [1,2,3], V =

{X,Y,Z}, C = {a,b,c}, MN = 5, MC = 5, and without negative cycles:

p(b) :- \+((q(a, b)), (q(X, Y)), (q(Z, X))).

0.4 :: q(X, X) :- \+(r(Y, Z, a)).

q(X, a) :- r(Y, Y, Z).

q(X, a) :- r(Y, b, Z).

r(Y, b, Z).

Finally, we set P = [p,q,r], A = [1,1,1], V = /0, C = {a}, MN = 3, MC = 3,

forbid negative cycles, and constrain predicates p and q to be independent. The resulting

search space contains thousands of programs such as:
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• 0.5 :: p(a) :- (p(a)); (p(a)).

0.2 :: q(a) :- (q(a)), (q(a)).

0.4 :: r(a) :- \+(q(a)).

• p(a) :- p(a).

0.5 :: q(a) :- (r(a)); (q(a)).

r(a) :- (r(a)); (r(a)).

• p(a) :- (p(a)); (p(a)).

0.6 :: q(a) :- q(a).

0.7 :: r(a) :- \+(q(a)).

6.9 Experimental Results

We now present the results of two experiments: in Section 6.9.1 we examine the

scalability of our constraint model with respect to its parameters and in Section 6.9.2 we

demonstrate how the model can be used to compare inference algorithms and describe

their behaviour across a wide range of programs. The experiments were run on a system

with Intel Core i5-8250U processor and 8 GB of RAM. The constraint model was

implemented in Java 8 with Choco 4.10.2 [Prud’homme et al., 2017]. All inference

algorithms are implemented in ProbLog 2.1.0.39 and were run using Python 3.8.2 with

PySDD 0.2.10 and PyEDA 0.28.0. For both sets of experiments, we generate programs

without negative cycles and use a 60 s timeout.

6.9.1 Empirical Performance of the Model

Along with constraints, variables, and their domains, two more design decisions are

needed to complete the model: heuristics and restarts. By trial and error, the variable

ordering heuristic was devised to eliminate sources of thrashing, i.e., situations where

a contradiction is being ‘fixed’ by making changes that have no hope of fixing the

contradiction. Thus, we partition all decision variables into an ordered list of groups

and require the values of all variables from one group to be determined before moving

to the next group. Within each group, we use the ‘first fail’ variable ordering heuristic.

The first group consists of all head predicates. Afterwards, we handle all remaining

decision variables from the first clause before proceeding to the next. The decision

variables within each clause are divided into
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• the structure array,

• body predicates,

• head arguments,

• (if |V |> 1) the intros array,

• body arguments.

For instance, in the clause from Example 6.3, all visible parts of the clause would be

decided in this order:

1
sibling(

3
X ,

3
Y )←

2
parent(

4
X ,

4
Z)

2
∧

2
parent(

4
Y ,

4
Z).

We also employ a geometric restart policy, restarting after 10,10×1.1,10×1.12, . . .

contradictions.2 We ran 399360 experiments, investigating the model’s efficiency and

gaining insight into what parameter values make the CSP harder. For |P |, |V |, |C |, MN ,

and MC −|P | (i.e., the number of clauses in addition to the mandatory |P | clauses), we

assign all combinations of 1, 2, 4, 8. MA is assigned to values 1–4. For each |P |, we

also iterate over all possible numbers of independent pairs of predicates, ranging from

0 up to
(|P |

2

)
. For each combination of the above-mentioned parameters, we pick ten

random ways to assign arities to predicates (such that MA occurs at least once) and ten

random combinations of independent pairs.

The majority (97.7 %) of runs finished in under 1 s, while four instances timed out:

all with |P |= MC −|P |= MN = 8 and the remaining parameters all different. This

suggests that—regardless of parameter values—most of the time a solution can be

identified instantaneously while occasionally a series of wrong decisions can lead the

solver into a part of the search space with no solutions.

In Figure 6.3, we plot how the mean number of nodes in the binary search tree grows

as a function of each parameter (the plot for the median is very similar). The growth of

each curve suggests how the model scales with higher values of the parameter. From

this plot, it is clear that MN is the limiting factor. This is because some tree structures

can be impossible to fill with predicates without creating either a negative cycle or a

forbidden dependency, and such trees become more common as the number of nodes

increases. Likewise, a higher number of predicates complicates the situation as well.

2Restarts help overcome early mistakes in the search process but can be disabled if one wants to find
all solutions, in which case search is complete regardless of the variable ordering heuristic.
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Figure 6.3: The mean number of nodes in the binary search tree for each value of each

experimental parameter. Note that the horizontal axis is on a log2 scale.

6.9.2 Experimental Comparison of Inference Algorithms

For this experiment, we consider clauses of two types: rules are clauses such that the

head atom has at least one variable, and facts are clauses with empty bodies and no

variables.3 We use our constraint model to generate the rules according to the following

parameter values: |P |, |V |,MN ∈ {2,4,8}, MA ∈ {1,2,3}, MC = |P |, C = /0. These

values are (approximately) representative of many standard benchmarking instances

which often have 2–8 predicates of arity one or two, 0–8 rules, and a larger database

of facts [Fierens et al., 2015]. Just like before, we explore all possible numbers of

independent predicate pairs. We also add a constraint that forbids empty bodies. For

both rules and facts, probabilities are uniformly sampled from {0.1,0.2, . . . ,0.9}. Fur-

thermore, all rules are probabilistic, while we vary the proportion of probabilistic facts

among 25 %, 50 %, and 75 %. For generating facts, we consider |C | ∈ {100,200,400}
and vary the number of facts among 103, 104, and 105 but with one exception: the

number of facts is not allowed to exceed 75 % of all possible facts with the given values

of P , A , and C . Facts are generated using a simple procedure that randomly selects

a predicate, combines it with the right number of constants, and checks whether the

generated atom is already included or not. We randomly select configurations from the

description above and generate ten programs with a complete restart of the constraint

3Note that these definitions are slightly different from the definitions in Chapter 2.
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Figure 6.4: Inference time for different values of MA and proportions of probabilistic

facts that are probabilistic. The total number of facts is fixed at 105.

solver before the generation of each program, including choosing different arities and

independent pairs. Finally, we set the query of each program to a random fact not

explicitly included in the program and consider six natively supported algorithms and

knowledge compilation techniques: binary decision diagrams (BDDs) [Bryant, 1986],

negation normal form (NNF), deterministic decomposable NNF (d-DNNF) [Darwiche

and Marquis, 2002], K-Best [De Raedt et al., 2007], and two encodings based on sen-

tential decision diagrams [Darwiche, 2011], one of which encodes the entire program

(SDDX), while the other one encodes only the part of the program relevant to the query

(SDD).4

Out of 11310 generated problem instances, about 35 % were discarded because

one or more algorithms were not able to ground the instance unambiguously. The first

observation (pictured in Figure 6.5) is that the algorithms are remarkably similar, i.e.,

the differences in performance are small and consistent across all parameter values

(including parameters not shown in the figure). Unsurprisingly, the most important

predictor of inference time is the number of facts. However, after fixing the number

of facts to a constant value, we can still observe that inference becomes harder with

higher arity predicates as well as when facts are mostly probabilistic (see Figure 6.4).

4Forward SDDs (FSDDs) and forward BDDs (FBDDs) [Tsamoura et al., 2020, Vlasselaer et al.,
2015] are omitted because the former uses too much memory and the implementation of the latter seems
to be broken at the time of writing.
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Figure 6.5: Mean inference time for a range of ProbLog inference algorithms as a

function of the total number of facts in the program and the proportion of independent

pairs of predicates. For the second plot, the number of facts is fixed at 105.

Finally, according to Figure 6.5, the independence structure of a program does not affect

inference time, i.e., state-of-the-art inference algorithms—although they are supposed

to [Fierens et al., 2011]—do not exploit situations where separate parts of a program

can be handled independently.

6.10 Conclusion

We described a constraint model for generating both logic programs and probabilistic

logic programs. The model avoids unnecessary symmetries, is reasonably efficient

and supports additional constraints such as predicate independence. Our experimental

results provide the first comparison of inference algorithms for probabilistic logic

programming languages that generalises over programs, i.e., is not restricted to just

a few programs and data sets. On the one hand, the experimental results revealed a

weakness shared by all of the inference algorithms, i.e., the inability to ignore the part of

a program that is easily seen to be irrelevant to the given query. On the other hand, all of

the algorithms behaved identically. Chapter 7 continues the quest to better understand

the differences among WMC algorithms by generating WMC instances with varying

structural properties.

We end the chapter by outlining two directions for future work. First, the experi-
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mental evaluation in Section 6.9.1 revealed scalability issues, particularly concerning

the length/complexity of clauses. However, this particular issue is likely to resolve

itself if the format of a clause is restricted to a conjunction of literals. Second, random

instance generation typically focuses on either realistic instances or sampling from a

simple and well-defined probability distribution. Our approach can be used to achieve

the former, but it is an open question how it could accommodate the latter.
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Chapter 7

Generating Random WMC Instances

7.1 Introduction

The experimental comparison of WMC algorithms on random probabilistic logic pro-

grams in Chapter 6 failed to discern any differences among the algorithms. However,

both Chapters 3 and 4 and recent work by others [Dudek et al., 2020a,b, Lagniez and

Marquis, 2017], show most WMC algorithms performing very similarly overall but

with overwhelming differences when run on specific subsets of data. Examples of such

segregating data sets include bipartite Bayesian networks by Sang et al. [2005a] and

relational Bayesian networks by Chavira et al. [2006] that encode reachability in graphs

under node deletion. So far, such performance differences remain unexplained. How-

ever, knowledge about the nature of these differences can inform our choices and aid

in further algorithmic developments. Moreover, identifying performance predictors of

algorithms is often an important step in developing a portfolio approach to the problem

[Xu et al., 2008]. Lastly, if new algorithms are always tested on the same set of bench-

marks, eventually they may become somewhat fitted to the particular characteristics of

those instances, leading to algorithms that may perform worse when run on new types

of data [Hossain et al., 2010].

Both theoretical and experimental analysis of SAT (and, to a lesser extent, #SAT)

algorithms on random instances is a rich area of research spanning almost forty years.

Variations of some of the first random models ever proposed [Franco and Paull, 1983,

Purdom Jr. and Brown, 1983] continue to be instrumental up to this day for, e.g.,

establishing the location of the threshold between satisfiable and unsatisfiable instances

[Achlioptas and Moore, 2002] and efficiently approximating #SAT [Galanis et al.,

2020]. Other random models consider non-uniform variable frequencies [Ansótegui

121
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et al., 2009], fixing the number of times each variable occurs both positively and

negatively [Coja-Oghlan and Wormald, 2018], and adding other constraints such as

cardinality and ‘exclusive or’ [Pote et al., 2019]. In contrast, only one WMC algorithm

so far has been analysed using random instances [Sang et al., 2004, 2005b]. The goal

of this chapter is to explain some of the differences between WMC algorithms via an

experimental study that uses random instances.

Experimental work investigating how SAT algorithms behave on random instances is

typically centred around parameters that describe each instance independently of its size.

The most well-known parameter is the ratio of clauses to variables (i.e., (clause) density).

Early work in the area showed random 3-SAT instances to be at their hardest when

density is around 4.25 [Mitchell et al., 1992]. Later work revealed that the interaction

between density and empirical hardness is much more solver-dependent [Coarfa et al.,

2003]. Many other parameters such as heterogeneity, locality, and modularity have

emerged from attempts to generate random instances similar to industry benchmarks for

SAT [Ansótegui et al., 2009, Bläsius et al., 2019, Giráldez-Cru and Levy, 2016, 2017].

What parameter(s) are most appropriate to study WMC? Theoretical upper bounds

on the performance of various WMC algorithms typically include a factor exponential

in the primal treewidth of the input formula (or a closely related notion) [Bacchus

et al., 2009, Darwiche, 2001a, 2004, Sang et al., 2004]. However—as we show in

Section 7.3—instances generated by a standard random model for k-CNF formulas fail

to exhibit enough variance in primal treewidth for us to infer its effect on the behaviour

of the algorithms. Therefore, we present an extension of this model with a parameter

that influences primal treewidth. The performance of WMC algorithms that use data

structures called algebraic decision diagrams (ADDs) [Bahar et al., 1997] is also known

to depend on the numerical values of weights [Dudek et al., 2020a,b]. Thus, our random

model also includes two parameters that control redundancies in these values. We

also investigate the effect of redundant weight values (e.g., having weights set to zero

and one or having the same weight repeat many times) on the running times of the

algorithms.

In addition to introducing a new random model for WMC instances, the contributions

of this chapter include several key experimental findings about the behaviour of WMC

algorithms—namely, C2D1 [Darwiche, 2004], CACHET2 [Sang et al., 2004], D43

1http://reasoning.cs.ucla.edu/c2d/
2https://henrykautz.com/Cachet/index.htm
3https://www.cril.univ-artois.fr/KC/d4.html

http://reasoning.cs.ucla.edu/c2d/
https://henrykautz.com/Cachet/index.htm
https://www.cril.univ-artois.fr/KC/d4.html
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[Lagniez and Marquis, 2017], DPMC4 [Dudek et al., 2020b], and MINIC2D5 [Oztok

and Darwiche, 2015]—on random instances. First, we show that the easy-hard-easy

pattern with respect to (w.r.t.) density is different for dynamic programming algorithms

than it is for all other algorithms. Second, we present statistical evidence that all the

algorithms scale exponentially w.r.t. primal treewidth and estimate how the base of that

exponential changes w.r.t. density. Third, we show how the performance of ADD-based

algorithms gradually improves w.r.t. the proportion of weights that have repeating values

and sharply improves w.r.t. the proportion of weights set to zero and one.

7.2 Background on WMC Algorithms

In this section, we briefly review the three major approaches to WMC—search, know-

ledge compilation, and dynamic programming—and their corresponding algorithms.

The main search-based WMC algorithm CACHET [Sang et al., 2004] is based on a

conflict-driven clause learning SAT solver [Moskewicz et al., 2001], which is then

extended with a component caching scheme and adapted to counting.

Recall that knowledge compilation refers to transformations of propositional formu-

las into more restrictive formats that make various operations (such as model counting)

tractable in the size of the representation [Darwiche and Marquis, 2002]. C2D [Dar-

wiche, 2004], D4 [Lagniez and Marquis, 2017], and MINIC2D [Oztok and Darwiche,

2015] are all algorithms of this type. C2D compiles to deterministic decomposable

negation normal form (d-DNNF) [Darwiche, 2001b]. Similarly, D4 compiles to decision-

DNNF (also known as decomposable decision graphs) [Fargier and Marquis, 2006].

The only difference between d-DNNF and decision-DNNF is that decision-DNNF has

if-then-else constructions instead of disjunctions [Lagniez and Marquis, 2017]. Finally,

MINIC2D compiles to decision-SDDs—a subset of sentential decision diagrams (SDDs)

that form a subset of d-DNNF [Darwiche, 2011].

All of the algorithms mentioned above execute in exactly the same way regardless

of whether computing WMC or #SAT. Two recent WMC algorithms instead use data

structures whose size (and thus the runtime of the algorithm) depends on the numer-

ical values of weights. These data structures are representations of pseudo-Boolean

functions, i.e., functions of the form f : 2X → R≥0, where X is a set, and 2X denotes

its powerset. ADDMC is the first such algorithm [Dudek et al., 2020a]. It uses ADDs

4https://github.com/vardigroup/dpmc
5http://reasoning.cs.ucla.edu/minic2d/

https://github.com/vardigroup/dpmc
http://reasoning.cs.ucla.edu/minic2d/
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to represent pseudo-Boolean functions, combining and simplifying them in a bottom-

up dynamic programming fashion. Since the size of an ADD for f depends on the

cardinality of the range of f [Bahar et al., 1997], the performance of the algorithm is

sensitive to the numerical values of weights, e.g., to how frequently they repeat. DPMC

extends ADDMC in two ways [Dudek et al., 2020b]. First, DPMC allows for the order

and nesting of operations on ADDs to be determined from an approximately-minimal-

width tree decomposition rather than by heuristics.6 Second, tensors are offered as an

alternative to ADDs.

In all known parameterised complexities of WMC algorithms, the exponential factor

is a function of primal treewidth or a closely related parameter. Interestingly, C2D

is specifically designed to handle high primal treewidth (which the author refers to

as connectivity [Darwiche, 1999]) and improves upon an earlier algorithm that has

O(mw2w) time complexity, where m is the number of clauses, and w is the width of the

decomposition tree which is known to be at most primal treewidth [Darwiche, 2001a,

2004]. While the complexity of CACHET was not analysed directly, the algorithm is

based on component caching which is known to have a 2O(w)nO(1) time complexity,

where n is the number of variables, and w is the branchwidth of the underlying hyper-

graph [Bacchus et al., 2009, Sang et al., 2004], which is known to be within a constant

factor of primal treewidth [Robertson and Seymour, 1991]. Similarly, the complexity of

DPMC is not described in the paper, although the authors define a notion of width w

that is at most primal treewidth plus one and estimate the running time of the (execution

part of the) algorithm to be proportional to 2w [Dudek et al., 2020b].

7.3 Random Formulas with Varying Primal Treewidth

Notation. For any graph G, we write V (G) for its set of nodes and E(G) for its set of

edges. Let S be a finite set. We write US for the discrete uniform probability distribution

on S. We represent any other probability distribution as a pair (S, p) where p : S→ [0,1]

is a probability mass function. For any probability distribution P , we write x ⇝P to

denote the act of sampling x from P . For instance, x ⇝({1,2},{1 7→ 0.1,2 7→ 0.9})
means that x becomes equal to 1 with probability 0.1 or to 2 with probability 0.9.

Our random model is based on the following parameters:

• the number of variables ν ∈ N+,
6There is also a recent line of work in using tree decompositions to guide the heuristics of search-based

model counters [Korhonen and Järvisalo, 2021].
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• density µ ∈ R>0,

• clause width κ ∈ N+ (for k-CNF formulas, κ = k),

• a parameter ρ ∈ [0,1] that influences the primal treewidth of the formula,

• the proportion δ ∈ [0,1] of variables x such that w(x) = 1 and w(¬x) = 0 or

w(x) = 0 and w(¬x) = 1,

• and the proportion ε ∈ [0,1−δ] of variables x such that w(x) = w(¬x) = 0.5.

The first three parameters are the standard parameters used to generate random k-CNF

formulas with νµ clauses (up to rounding). We expect to observe (possibly different)

values of µ that maximize the running time of each algorithm for fixed values of ν and

κ.

Parameters δ and ε control the numerical values of weights similarly to determ-

inism and parameter equality—facets of local structure considered in the literature

on probabilistic models [Vlasselaer et al., 2016b]. While all other WMC algorithms

disregard the weights, DPMC [Dudek et al., 2020b] can exploit both determinism and

equal weights to solve the problem faster. Weights such as zero and one are particularly

‘simplifying’ because they are respectively the additive and multiplicative identities.

Having them propagate through the algorithm reduces the size of many ADDs used

by DPMC, making the algorithm more efficient. Including many copies of the same

weight (e.g., 0.5) can similarly simplify ADDs as well.

The process behind generating random k-CNF formulas is summarized as Al-

gorithm 7.1. For the rest of this section, let x1,x2, . . . ,xν be the variables of the formula

under construction. We simultaneously construct both formula φ and its primal graph

G.7 Each iteration of the first for-loop adds a clause to φ. This is done by constructing a

set X of variables to be included in the clause, and then randomly adding either x or

¬x to the clause for each x ∈ X on line 10. Function newVariable randomly selects

each new variable x, and lines 7–9 add x to the graph and the formula while also adding

edges between x and all the other variables in the clause. To select each variable, line 13

defines set N to contain all edges with exactly one endpoint in X . The edges that will be

added to G by line 8 will form a subset of N. If N = /0, we select the variable uniformly

at random (u.a.r.) from all viable candidates. Otherwise, ρ determines how much we

7The idea to directly take the primal graph into consideration while generating the formula is new—
cf. random SAT instance generators based on, e.g., adversarial evolution [Hossain et al., 2010] and
community structure [Giráldez-Cru and Levy, 2016].
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Algorithm 7.1: Generating a random formula.
Input: ν,κ ∈ N+ (such that κ < ν), µ ∈ R>0, ρ ∈ [0,1].

Output: A k-CNF formula φ.

1 φ← empty CNF formula;

2 G← empty graph;

3 for i← 1 to ⌊νµ⌋ do
4 X ← /0;

5 for j← 1 to κ do
6 x← newVariable(X, G);

7 V (G)← V (G)∪{x};
8 E(G)← E(G)∪{{x,y} | y ∈ X };
9 X ← X ∪{x};

10 φ← φ∪{{ l ⇝U{x,¬x} | x ∈ X }};

11 return φ;

12 Function newVariable(set of variables X, primal graph G):
13 N←{e ∈ E(G) | |e∩X |= 1};
14 if N = /0 then return x ⇝U({x1,x2, . . . ,xν }\X);

15 return x ⇝
(
{x1,x2, . . . ,xν }\X , y 7→ 1−ρ

ν−|X | +ρ
|{z∈X |{y,z}∈E(G)}|

|N|

)
;

bias the uniform distribution towards variables that would introduce the smallest number

of new edges to G.

When ρ = 0, Algorithm 7.1 reduces to what has become the standard random model

for k-CNF formulas. Equivalently to Franco and Paull [1983], we independently sample

a fixed number of clauses, each clause has no duplicate variables, and each variable

becomes either a positive or a negative literal with equal probabilities. At the other

extreme, when ρ = 1, the first variable of a clause is still chosen u.a.r., but all other

variables are chosen from those that already coappear in a clause (if possible). The

probability that a variable is selected to be included in a clause scales linearly w.r.t. the

proportion of edges in N that would be repeatedly added to G if the variable y was added

to the clause. This is an arbitrary choice (which appears to work well, see Section 7.3.1)

although alternatives (e.g., exponential scaling) could be considered. As long as ρ < 1,

every k-CNF formula retains a positive probability of being generated by the algorithm.

To transform the generated formula into a WMC instance, we need to define weights



put (,)

7.3. Random Formulas with Varying Primal Treewidth 127

on literals.8 We want to partition all variables into three groups: those with weights

equal to zero and one, those with weights equal to 0.5, and those with arbitrary weights,

where the size of each group is determined by δ and ε. To do this, we sample a

permutation π ⇝USν (where Sν is the permutation group on {1,2, . . . ,ν}), and assign

to each variable xn a weight drawn u.a.r. from

• U{0,1} if π(n)≤ νδ,

• U{0.5} if νδ < π(n)≤ νδ+νε,

• and U{0.01,0.02, . . . ,0.99}9 if π(n)> νδ+νε.

We extend these weights to weights on literals by choosing the weight of each positive

literal to be equal to the weight of its variable, and the weight of each negative literal to

be such that w(x)+w(¬x) = 1 for all variables x. This restriction is to ensure consistent

answers among the algorithms.

Example 7.1. Let ν = 5, µ = 0.6, κ = 3, ρ = 0.3, δ = 0.4, and ε = 0.2 and consider how

Algorithm 7.1 generates a random instance. Since κ = 3, and ⌊νµ⌋= 3, the algorithm

will generate a 3-CNF formula with three clauses.

For the first variable of the first clause, we are choosing u.a.r. from {x1,x2, . . . ,x5 }.
Suppose the algorithm chooses x5. Graph G then gets its first node but no edges. The

second variable is chosen u.a.r. from {x1,x2,x3,x4 }. Suppose the second variable is x2.

Then G gets another node and its first edge between x2 and x5. The third variable in the

first clause is similarly chosen u.a.r. from {x1,x3,x4 } because the only edge in G has

both endpoints in X = {x2,x5 }, and so N = /0. Suppose the third variable is x1. Graph

G becomes a triangle connecting x1, x2, and x5. Each of the three variables is then

added to the clause as either a positive or a negative literal (with equal probabilities).

Thus, the first clause becomes, e.g., ¬x5∨ x2∨ x1.

The first variable of the second clause is chosen u.a.r. from {x1,x2, . . . ,x5 }. Suppose

it is x5 again. When the function newVariable tries to choose the second variable,

X = {x5 }, and so N = {{x1,x5 },{x2,x5 }}. The second variable is chosen from the

discrete probability distribution

Pr(x1) = Pr(x2) =
1−0.3
5−1

+0.3× 1
2
= 0.325

8Recall that in Chapters 3 and 4 we showed that algorithms such as DPMC and ADDMC [Dudek
et al., 2020a,b] become more efficient when equipped with a different input format that assigns weights
to formulas rather than literals.

9For convenience, we represent (0,1) as 99 discrete values.
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and

Pr(x3) = Pr(x4) =
1−0.3
5−1

= 0.175.

We skip the details of how all remaining variables and clauses are selected and

consider the weight assignment. First, we shuffle the list of variables and get, e.g.,

L = (x4,x3,x2,x1,x5). This means that the first νδ = 5× 0.4 = 2 variables of L get

weights u.a.r. from {0,1}, the next νε = 5× 0.2 = 1 variable gets a weight of 0.5,

and the remaining two variables get weights u.a.r. from {0.01,0.02, . . . ,0.99}. The

weight function w : {x1,x2, . . . ,x5,¬x1,¬x2, . . . ,¬x5 } → [0,1] can then be defined as,

e.g., w(x4) = w(¬x3) = 0, w(x3) = w(¬x4) = 1, w(x2) = w(¬x2) = 0.5, w(x1) = 0.23,

w(¬x1) = 0.77, w(x5) = 0.18, and w(¬x5) = 0.82.

7.3.1 Validating the Model

The idea behind our model is that manipulating the value of ρ should allow us to

generate instances of varying primal treewidth. Is this effect observable in practice? In

addition, as WMC instances are mostly used for probabilistic inference, they tend to be

satisfiable. Therefore, we want to filter out unsatisfiable instances from those generated

by the model and need to ensure that the proportion of satisfiable instances remains

sufficiently high. Given that higher values of ρ can result in constraints on variables

being more localised and concentrated, we ask: are instances generated with higher

values of ρ less likely to be satisfiable? To answer both questions, we run the following

experiment.

Experiment 7.1. We fix ν = 100,δ = ε = 0, and consider random instances with

µ = 2.5×
√

2
−5
,2.5×

√
2
−4
, . . . ,2.5×

√
2

5
, κ = 2,3,4,5, and ρ going from 0 to 1 in

steps of 0.01. For each combination of parameters, we generate ten instances.10 We

check if each instance is satisfiable using MINISAT11 2.2.0 [Eén and Sörensson, 2003]

and calculate its (approximate) primal treewidth using HTD12 [Abseher et al., 2017].

Figure 7.1 shows the relationship between ρ and primal treewidth. Except for when

both µ and κ are set to very low values (i.e., the formulas are small in both clause

width and the number of clauses), primal treewidth decreases as ρ increases. This

downward trend becomes sharper as µ increases, however, not uniformly: it splits into

10Since one expects similar values of ρ to produce instances with similar properties, and ρ’s are
enumerate quite densely, generating only ten instances is sufficient.

11http://minisat.se/MiniSat.html
12https://github.com/mabseher/htd

http://minisat.se/MiniSat.html
https://github.com/mabseher/htd
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Figure 7.1: The relationship between ρ and primal treewidth for various values of µ and

κ for k-CNF formulas from Experiment 7.1. Black points represent individual instances,

and blue lines are smoothed means computed using locally weighted smoothing. The

values of µ are rounded to one decimal place.

a roughly linear segment that approaches a horizontal line (for most values of ρ) and

a sharply-decreasing segment that approaches a vertical line (when ρ is close to one).

Higher values of κ seem to expedite this transition, i.e., with a higher value of κ, a lower

value of µ is sufficient for a smooth downward curve between ρ and primal treewidth to

turn into a combination of a horizontal and a vertical line. While this behaviour may

be troublesome when generating formulas with higher values of µ (almost all of which

would be unsatisfiable), the relationship between ρ and primal treewidth is excellent

for generating 3-CNF formulas close to and below the satisfiability threshold of 4.25

[Crawford and Auton, 1996].

Regarding satisfiability, the proportion of satisfiable 3-CNF formulas drops from

63.6 % when ρ = 0 to 50.9 % when ρ = 1, so—while ρ does affect satisfiability—the

effect is not significant enough to influence our experimental setup in the next section.

7.4 Experimental Results

In this section, we describe three experiments that examine how the running times of

WMC algorithms change w.r.t. the parameters of our random model. All experiments

were run on Intel Xeon E5–2630 with Scientific Linux 7, GCC 10.2.0, Python 3.8.1,



put (,)

130 Chapter 7. Generating Random WMC Instances

R 4.1.0, C2D 2.20 [Darwiche, 2004], CACHET 1.22 [Sang et al., 2004], HTD 1.2.0

[Abseher et al., 2017], and with no additional preprocessing. With both C2D and D4,

we use QUERY-DNNF13 to compute the numerical answer from the compiled circuit.

We omit ADDMC [Dudek et al., 2020a] from our experiments as it exceeds time and

memory limits on too many instances; however, observations about the behaviour of

DPMC [Dudek et al., 2020b] apply to ADDMC as well, with the addendum that the

tree decomposition implicitly used by ADDMC may have a significantly higher width.

DPMC is run with tree decomposition-based planning (using one iteration of HTD) and

ADD-based execution—the combination that was found to be most effective by Dudek

et al. [2020b]. We restrict our attention to 3-CNF formulas, generate 100 satisfiable

instances for each combination of parameters, and run each of the five algorithms with

a 500 s time limit and an 8 GiB memory limit. While both limits are somewhat low,

we prioritise large numbers of instances to increase the accuracy and reliability of

our results. Unless stated otherwise, in each plot of this section, lines denote median

values, and shaded regions show interquartile ranges. We run the following three

experiments, setting ν = 70 in all of them as we found that this produces instances of

suitable difficulty.

Experiment 7.2 (Density and primal treewidth). Let ν = 70, µ go from 1 to 4.3 in steps

of 0.3, ρ go from 0 to 0.5 in steps of 0.01, and δ = ε = 0.

Experiment 7.3 (δ). Let ν = 70, µ = 2.214, ρ = 0, δ go from 0 to 1 in steps of 0.01,

and ε = 0.

Experiment 7.4 (ε). Same as Experiment 7.3 but with δ = 0 and ε going from 0 to 1 in

steps of 0.01.

In each experiment, the proportion of algorithm runs that timed out never exceeded

3.8 %. While in Experiment 7.2 only 1 % of experimental runs ran out of memory, the

same percentage was higher in Experiments 7.3 and 7.4—10 and 12 %, respectively.

D4 [Lagniez and Marquis, 2017] and C2D are the algorithms that experienced the most

issues fitting within the memory limit, accounting for 66–72 % and 28–33 % of such

instances, respectively. We exclude the runs that terminated early due to running out of

memory from the rest of our analysis.

In Experiment 7.2, we investigate how the running time of each algorithm depends

on the density and primal treewidth by varying both µ and ρ. The results are in Figure 7.2.
13http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
14Experiment 7.2 shows this density to be the most challenging for DPMC.

http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
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Figure 7.2: Visualisations of the data from Experiment 7.2. The top-left plot shows how

the running time of each algorithm changes w.r.t. density when ρ = 0. The top-right

plot shows changes in the running time of each algorithm w.r.t. primal treewidth with µ

fixed at 1.9. The plots at the bottom show how the estimated base of the exponential

relationship between primal treewidth and the runtime of each algorithm depends on µ.

The bottom-left plot is for the simple linear model (with shaded regions showing standard

error), and the bottom-right plot uses the estimates provided by ESA [Pushak and Hoos,

2020] (with shaded regions showing 95 % confidence intervals).

The first thing to note is that the peak hardness w.r.t. density occurs at around 1.9 for all

algorithms except for DPMC, which peaks at 2.2 instead.15 This finding is consistent

with previous work, which shows CACHET to peak at 1.8 [Sang et al., 2004].16

The other question we want to investigate using this experiment is how each al-

gorithm scales w.r.t. primal treewidth. The top-right plot in Figure 7.2 shows this

relationship for a fixed value of µ, and one can see some evidence that the running

time of DPMC grows faster w.r.t. primal treewidth than the running time of the other

algorithms. We use two statistical techniques to quantify this growth: a simple linear

regression model and the empirical scaling analyzer (ESA) v217 [Pushak and Hoos,

2020]. In both cases, for each algorithm and value of µ in Experiment 7.2, we select the

median runtime for all available values of primal treewidth. In the former case, we fit

15While exact values might be hard to read from the plot, they are confirmed by numerical data.
16For comparison, #SAT algorithms have been observed to peak at densities 1.2 and 1.5 [Bayardo Jr.

and Pehoushek, 2000].
17https://github.com/YashaPushak/ESA

https://github.com/YashaPushak/ESA
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Figure 7.3: The coefficients of determination (rounded to one decimal place) of all the

linear models fitted for the top-right subplot of Figure 7.2.

the model ln t ∼ αw+β, where t is the median running time of the algorithm, w is the

primal treewidth, and α and β are parameters.18 In other words, this model attempts

to express median running time as eβ(eα)w. In the latter case, we run ESA with 1001

bootstrap samples, a window of 101, and use the first 30 % of the data for training.

The results of both models are qualitatively the same (with the exception of DPMC

run on instances with µ = 1) and are displayed at the bottom of Figure 7.2. We find

that, indeed, DPMC scales worse w.r.t. primal treewidth than any other algorithm

across all values of µ and is the only algorithm that does not become indifferent to

primal treewidth when faced with high-density formulas. A second look at the top-left

subplot of Figure 7.2 suggests an explanation for the latter observation. The running

times of all algorithms except for DPMC approach zero when µ > 3 while the median

running time of DPMC approaches a small non-zero constant instead. This observation

also explains why Figure 7.3 shows that the fitted models fail to explain the data for

non-ADD algorithms running on high-density instances—the running times are too

small to be meaningful. In all other cases, an exponential relationship between primal

treewidth and runtime fits the experimental data remarkably well.

Another thing to note is that MINIC2D [Oztok and Darwiche, 2015] is the only

18Similar statistical analyses have been used to investigate polynomial-to-exponential phase transitions
in SAT [Coarfa et al., 2003] and the behaviour of SAT solvers on CNF-XOR formulas [Dudek et al.,
2017].
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Figure 7.4: Changes in the running time of each algorithm as a result of changing

δ (on the left-hand side) and ε (on the right-hand side) according to the data from

Experiments 7.3 and 7.4.

algorithm that exhibits a clear low-high-low pattern in the bottom subplots of Figure 7.2.

To a smaller extent, the same may apply to C2D and DPMC as well, although the

evidence for this is limited due to relatively large gaps between different values of µ in

Experiment 7.2. In contrast, the running times of CACHET and D4 remain dependent on

primal treewidth even when the density of the WMC instance is very low, suggesting that

MINIC2D should have an advantage on low-density high-primal-treewidth instances.

Finally, Experiments 7.3 and 7.4 investigate how changing the numerical values

of weights can simplify a WMC instance. The results are plotted in Figure 7.4. As

expected, the running time of all algorithms other than DPMC stay the same regardless

of the value of δ or ε. The running time of DPMC, however, experiences a sharp

(exponential?) decline with increasing δ. The decline w.r.t. ε is also present, although

significantly less pronounced and with high variance.

How are these random instances different from real data? As a representative sample,

we take the WMC encodings of Bayesian networks created using the method by Sang

et al. [2005a] as found in the experimental setup19 of the DPMC paper [Dudek et al.,

2020b]. A typical WMC instance has ν = 200 variables, half of which have equal

weights (i.e., ε = 0.5), an average clause width of κ = 2.6, a density of µ = 2.5, and a

primal treewidth of 28. Our random instances have fewer variables and (for the most

19https://github.com/vardigroup/DPMC/releases

https://github.com/vardigroup/DPMC/releases
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part) lower density. Another important difference is that our instances are in k-CNF

whereas a typical encoding of a Bayesian network has many two-literal clauses mixed

with clauses of various longer widths. Despite real instances having more variables,

their primal treewidth is rather low. Perhaps this partially explains why the performance

of DPMC is in line with the performance of all other algorithms on traditionally-used

benchmarks [Dudek et al., 2020b] despite struggling with most of our random data.

To sum, we found that C2D and D4 are the most memory-intensive algorithms,

CACHET is great on random instances in general, MINIC2D exceeds on low-density

high-primal-treewidth instances, and DPMC is at its best on low-density low-primal-

treewidth instances. Furthermore, a median instance with all weights equal to each other

is about three times easier for DPMC than a median instance with random weights.

Another important observation is about how peak hardness w.r.t. density depends on

the algorithm: DPMC peaks at a higher density than all other WMC algorithms, which

peak at a higher density than (some) #SAT algorithms.

7.5 Conclusions and Future Work

In this chapter, we studied the behaviour of and differences among WMC algorithms

on random instances generated by a standard model for k-CNF formulas extended

with parameters that control primal treewidth and literal weights. Among other things,

we established statistical evidence for the existence of an exponential relationship

between primal treewidth and the running time of all WMC algorithms. The running

time of ADD-based algorithms was observed to peak at a higher density, scale worse

w.r.t. primal treewidth, and depend negatively on repeating weight values compared to

algorithms based on search or knowledge compilation. These observations can, to some

degree, be extended to a closely related weighted projected model counting algorithm

[Dudek et al., 2021] as well as to other applications of ADDs more generally, e.g.,

probabilistic inference [Chavira and Darwiche, 2007, Gogate and Domingos, 2011] and

stochastic planning [Hoey et al., 1999].

One limitation of our work is that variability in primal treewidth was achieved

via a parameter, and this could bias randomness in some unexpected way (although

it is encouraging that there is only a slight decrease in the proportion of satisfiable

instances between ρ = 0 and ρ = 1). Perhaps a theoretical investigation of the proposed

model is warranted, including a characterisation of how ρ influences primal treewidth

and the structure of the primal graph more generally. Since treewidth is widely used
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in parameterised complexity [Downey and Fellows, 2013], formally establishing a

connection with ρ could make our random model useful for a variety of other hard

computational problems.

To keep the number of experiments feasible, we restricted our attention to 3-CNF

formulas, although, of course, this is not very representative of real-world WMC

instances. The model could be adapted to generate non-k-CNF formulas, and perhaps

a more representative structure could be achieved by introducing new variables that

clauses define to be equivalent to select conjunctions of literals as is done in one of the

WMC encodings for Bayesian networks [Darwiche, 2002].
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Chapter 8

Conclusion

In Section 8.1 we review the contributions of this thesis, and in Section 8.2 we provide

a perspective on how future work could develop, either directly or indirectly based on

the results of our work.

8.1 Contributions

The contributions of this thesis can be divided into two parts:

• empirically-motivated contributions that make WMC more efficient

• and (conceptual, theoretical, or experimental) contributions that help us under-

stand WMC (more fully or in a new way).

On the empirical front, most of our contributions focus on the efficiency and

tractability of the propositional and first-order variants of WMC. In Chapters 3 and 4,

we show how the efficiency of WMC can be improved by generalising weights from

their standard definition based on literals to one capable of representing a richer subset

of all possible pseudo-Boolean functions. In Chapter 5, we extend the capabilities

of FORCLIFT [Van den Broeck et al., 2011] so that it can solve more instances in a

lifted manner, e.g., instances with injective mappings. The empirical contributions

of Chapters 6 and 7 are about introducing novel tools and methods for WMC. In

Chapter 6, we developed a constraint model for (probabilistic) logic programs that can

be used to generate random programs or enumerate all small programs under some given

constraints. The constraints include various notions of size, the structure/complexity

of a clause, and the independence of random variables. Finally, in Chapter 7, we

present a way to generate propositional formulas in CNF with varying primal treewidth.
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As treewidth is a well-known parameter commonly used to describe parameterised

complexity results [Downey and Fellows, 2013], the same model (or a variation thereof)

can be used in experimental studies of many other logic-based problems as well.

The experimental work in these last two chapters, i.e., Chapters 6 and 7, also contains

important observations about WMC and probabilistic inference algorithms. First,

Chapter 6 demonstrates remarkable similarities among ProbLog inference algorithms.

This observation suggests that the bottleneck of ProbLog inference (at least across our

random instances) might be related to logic programming more than WMC. Second,

Chapter 7 reveals, among other things, that WMC algorithms based on algebraic

decision diagrams (ADDs) and dynamic programming scale worse with primal treewidth

and work better with instances that have fewer clauses (i.e., lower density) compared to

other algorithms. Understanding such differences among algorithms is important in the

development of new algorithms, algorithm portfolios, and hybrid approaches to WMC.

Back in Chapter 3, we show how WMC can be seen as the problem of computing

the value of a measure on some element of a Boolean algebra. This insight leads us

to consider generalised weight functions that express, e.g., conditional probabilities

more succinctly and can lead to improved probabilistic inference speed for Bayesian

networks. In Chapter 4, we continue the work on generalising WMC and formally

define the generalisation as pseudo-Boolean projection (PBP). Moreover, we show that

previous work on WMC encodings is not in vain, and the benefits can (in most cases)

be transferred to PBP. Lastly, Chapter 5 contains two important lessons. First, ‘circuits’

with cycles can be more expressive than their acyclic predecessors. Second, first-order

model counting (and first-order knowledge compilation in particular) can discover the

definitions of recursive functions (including recurrence relations) that capture the model

count of a given sentence.

In summary, we

• introduced new foundations for WMC based on measures on Boolean algebras,

• generalised WMC to PBP,

• introduced new encoding schemes and encoding transformation algorithms,

• introduced CRANE, i.e., a more powerful version of FORCLIFT that works with

graphs rather than circuits,

• and provided algorithms for random instance generation.
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8.2 Future Directions

In this section, we present a broad overview of how our contributions and the questions

raised by this work could be taken forward and influence key areas of research in

computer science, artificial intelligence (AI), and mathematics.

8.2.1 Algorithms and Applications

In this thesis, we contributed to the development and applicability of three WMC

algorithms: ADDMC [Dudek et al., 2020a], DPMC [Dudek et al., 2020b], and

FORCLIFT [Van den Broeck et al., 2011]. The first two are propositional WMC

algorithms based on ADDs, whereas FORCLIFT is a WMC algorithm for first-order

logic based on knowledge compilation. While in this work we focused exclusively

on exact algorithms, all of them could be adapted to approximate instead. An approx-

imation technique called lifted relax, compensate and then recover is already part of

FORCLIFT [Van den Broeck et al., 2012], so it would only need to be adapted to the

generalised setting of CRANE. Likewise, approximate computations using ADDs have

already been studied [St-Aubin et al., 2000], so, e.g., DPMC could be extended to

approximate as well.

Most weighted first-order model counting (WFOMC) algorithms try to solve each

instance in a lifted manner (i.e., run in polynomial time with respect to the sizes

of the domains involved) and fail if unsuccessful. FORCLIFT is an exception as it

supports using a (propositional) WMC algorithm for parts of the problem that cannot

be solved by other compilation rules. Can this transition to WMC be implemented

more efficiently, i.e., without fully grounding the instance? Is the WFOMC algorithm

better off constructing its own exponential-time solution instead of relying on a WMC

algorithm (and is that even possible)? The only way WFOMC can become the standard

approach to probabilistic inference in statistical relational models is by being able to

gracefully handle all instances, even if it means abandoning efficiency guarantees.

Finally, ample opportunities remain to improve WMC encodings that already exist

as well as connect WMC to new problem domains. In particular, we showed how PBP

encodings of Bayesian networks are much smaller than the equivalent WMC encodings

and can be handled more efficiently by a WMC algorithm. Designing PBP encodings

for other applications of WMC and new problem domains could be similarly beneficial.

Moreover, back in Chapter 1, we compared WMC to a range of other computational

problems that ask to compute a sum of products. Establishing efficient reductions
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among these problems could yield new fixed-parameter tractable algorithms and/or

improvements to the empirical state of the art. Similarly, adapting a WMC algorithm

to a semiring other than (R≥0,+, ·) could yield improvements to some of the related

problems outlined by Kimmig et al. [2017].

8.2.2 Computational Complexity

Note that the execution of both WMC and WFOMC algorithms can be divided into two

parts:

• looking for a solution (i.e., an arithmetic circuit/expression that computes the

required sum of products) and

• performing the numerical computations that produce the final answer.

(The two are typically much more intertwined in the case of propositional WMC.) With

this dichotomy in mind, one could ask: are the algorithms finding optimal solutions?

How much of the total running time depends on the complexity of the solution, and how

much on the algorithmic methods for finding one? Answers to these questions would

highlight the weaknesses of state-of-the-art algorithms and direct the efforts of future

research towards addressing these weaknesses.

On a more theoretical level, single-domain (W)FOMC problems compute sequences,

many of which are well-known to mathematicians. Since there is significant interest in

computing such sequences efficiently, the existence of many such sequences with no

efficient formulas suggests that a tractable solution might not exist. However, we have

no proof of that, i.e., no arithmetic circuit lower bounds for sequences that have been

known for decades and are easy to describe in natural language and logic. So far, the

most notable hardness result states that there exists a sentence in first-order logic with

three variables for which FOMC is #P1-complete [Beame et al., 2015]. Having similar

hardness results for sentences that are both simple and practical would be a significant

advancement in the field.

8.2.3 Random Instances

In this thesis, we introduce two ways to generate random instances: one for (probabil-

istic) logic programs and one for propositional formulas in CNF that are then turned

into WMC instances. As we provide the very first attempts at testing WMC algorithms

on random data, many opportunities for improvements and future work remain.
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To begin with, applications of WMC could inspire future work on random instance

generation in two ways. First, one could generate random instances of some application

of WMC and convert them to WMC instances or probabilistic logic programs. Second,

one could analyse the properties of real-world data and develop random models that

exhibit similar characteristics as has been done quite extensively in the SAT community

[Ansótegui et al., 2009, Bläsius et al., 2019, Giráldez-Cru and Levy, 2016, 2017].

Moreover, an interesting opportunity to connect our work on random logic programs

in Chapter 6 and on (W)FOMC in Chapter 5 is by adapting the constraint model

to generate (W)FOMC instances instead of logic programs. This way one could

systematically search for interesting instances that, e.g.,

• reveal differences in the runtime complexity of various algorithms or

• demonstrate a gap between the performance of state-of-the-art WFOMC al-

gorithms and formulas constructed by hand.

There is also ample opportunity for theoretical contributions. For instance, one ex-

planation for the surprising experimental results of Chapter 6 is that all of the generated

instances yielded easy WMC problems, and the computational bottleneck was in the

handling of the logic program before WMC. We can state this idea as a (somewhat

informal) conjecture.

Conjecture 8.1. With high probability, the WMC instance that results from a random

probabilistic logic program generated by the constraint model in Chapter 6 is tractable

for some WMC algorithm.

8.2.4 Artificial Intelligence and Combinatorics

A swiftly emerging area of research—neural-symbolic AI—attempts to combine deep

neural networks (the approach to machine learning responsible for many recent achieve-

ments in the field) with logical reasoning [De Raedt et al., 2020, Garnelo and Shanahan,

2019, Pascal and Kamruzzaman, 2021]. As a result, explicit background knowledge can

be seamlessly integrated with large amounts of low-level data that deep neural networks

are so proficient at handling. Similarly, our hope for the broader field of AI is that the

field shifts some of its focus from numbers and probabilities to structural concepts such

as functions and relations. Once a solution to, e.g., a WFOMC problem is formulated as

a function f rather than the evaluation of f on some particular input values, richer ways

of reasoning become available. For example, instead of asking whether a probability of
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some event is above/below some threshold in a particular situation, one could ask for

conditions on the input values that are necessary for the probability to be sufficiently

high/low. Such reasoning capabilities have clear benefits to the robustness of artificial

agents and explainability—another rapidly emerging area of research [Arya et al., 2019,

Belle and Papantonis, 2021, Bueff et al., 2022].

For the benefit of both AI and combinatorics, we would like to reiterate and expand

on the notion of an automatic enumerative combinatorialist by Barvı́nek et al. [2021].

Perhaps (W)FOMC can mature into an easy-to-use tool that can compute any function

expressible in first-order logic, in many cases providing a simple solution via a com-

bination of recursive functions. Similarly to how a constraint programmer describes

the constraints and asks the solver for a solution, a combinatorialist could describe

what needs to be counted in a logic-based format and receive recursive or asymptotic

solutions, generating functions, etc.
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