10,884 research outputs found

    Performance Analysis of Concurrent Transmission with Reducing Handshakes in Multi-Hop Wireless Mesh Networks (WMNS)

    Get PDF
    The IEEE 802.11 Distributed Coordination Function (DCF) Medium Access Control (MAC) protocol continues to suffer from throughput degradation when directly applied in multi-hop Wireless Mesh Network (WMN). The Request-to-Send/Clear-to-Send (RTS/ CTS) signaling partially solved hidden node problems however the exposed node problems remain unaddressed. These exposed nodes lead to throughput degradation especially when the transmission in multi-hop networks is considered. The major reason for this poor performance is the restricted nature of the IEEE 802.11 MAC, which does not allow exposed nodes to initiates its transmission for the entire duration of ongoing transmission. Moreover, since multi-hop communication such as wireless mesh network transfer the data packet via intermediate nodes, the amount of control handshakes that take place at each intermediate node significantly reduce the throughput. This project proposes a set of enhancement to the existing IEEE 802.11 DCF MAC by enabling concurrent transmission by the exposed nodes and reduces the amount of handshakes required at every hop until the data packet reaches its destination. Analytical models are developed for analytical study of MAC protocols operating in multi-hop mesh networks and simulated over quasi-static Rayleigh fading channel. The multi-hop network performances are evaluated in terms of throughput and delay. The protocol outperforms the existing IEEE DCF MAC with more than 260% increase in overall throughput of multi-hop WM

    A Cooperative Diversity-Based Robust Mac Protocol in Wireless Ad Hoc Networks

    Get PDF
    In interference-rich and noisy environment, wireless communication is often hampered by unreliable communication links. Recently, there has been active research on cooperative communication that improves the communication reliability by having a collection of radio terminals transmit signals in a cooperative way. This paper proposes a medium access control (MAC) algorithm, called Cooperative Diversity MAC (CD-MAC), which exploits the cooperative communication capability of the physical (PHY) layer to improve robustness in wireless ad hoc networks. In CD-MAC, each terminal proactively selects a partner for cooperation and lets it transmit simultaneously so that this mitigates interference from nearby terminals, and thus, improves the network performance. For practicability, CD-MAC is designed based on the widely adopted IEEE 802.11 MAC. For accurate evaluation, this study presents and uses a realistic reception model by taking bit error rate (BER), derived from Intersil HFA3861B radio hardware, and the corresponding frame error rate (FER) into consideration. System-level simulation study shows that CD-MAC significantly outperforms the original IEEE 802.11 MAC in terms of packet delivery ratio and end-to-end delay

    Network-Layer Resource Allocation for Wireless Ad Hoc Networks

    Get PDF
    This thesis contributes toward the design of a quality-of-service (QoS) aware network layer for wireless ad hoc networks. With the lack of an infrastructure in ad hoc networks, the role of the network layer is not only to perform multihop routing between a source node and a destination node, but also to establish an end-to-end connection between communicating peers that satisfies the service level requirements of multimedia applications running on those peers. Wireless ad hoc networks represent autonomous distributed systems that are infrastructure-less, fully distributed, and multi-hop in nature. Over the last few years, wireless ad hoc networks have attracted significant attention from researchers. This has been fueled by recent technological advances in the development of multifunction and low-cost wireless communication gadgets. Wireless ad hoc networks have diverse applications spanning several domains, including military, commercial, medical, and home networks. Projections indicate that these self-organizing wireless ad hoc networks will eventually become the dominant form of the architecture of telecommunications networks in the near future. Recently, due to increasing popularity of multimedia applications, QoS support in wireless ad hoc networks has become an important yet challenging objective. The challenge lies in the need to support the heterogeneous QoS requirements (e.g., data rate, packet loss probability, and delay constraints) for multimedia applications and, at the same time, to achieve efficient radio resource utilization, taking into account user mobility and dynamics of multimedia traffic. In terms of research contributions, we first present a position-based QoS routing framework for wireless ad-hoc networks. The scheme provides QoS guarantee in terms of packet loss ratio and average end-to-end delay (or throughput) to ad hoc networks loaded with constant rate traffic. Via cross-layer design, we apply call admission control and temporary bandwidth reservation on discovered routes, taking into consideration the physical layer multi-rate capability and the medium access control (MAC) interactions such as simultaneous transmission and self interference from route members. Next, we address the network-layer resource allocation where a single-hop ad hoc network is loaded with random traffic. As a starting point, we study the behavior of the service process of the widely deployed IEEE 802.11 DCF MAC when the network is under different traffic load conditions. Our study investigates the near-memoryless behavior of the service time for IEEE 802.11 saturated single-hop ad hoc networks. We show that the number of packets successfully transmitted by any node over a time interval follows a general distribution, which is close to a Poisson distribution with an upper bounded distribution distance. We also show that the service time distribution can be approximated by the geometric distribution and illustrate that a simplified queuing system can be used efficiently as a resource allocation tool for single hop IEEE 802.11 ad hoc networks near saturation. After that, we shift our focus to providing probabilistic packet delay guarantee to multimedia users in non-saturated IEEE 802.11 single hop ad hoc networks. We propose a novel stochastic link-layer channel model to characterize the variations of the IEEE 802.11 channel service process. We use the model to calculate the effective capacity of the IEEE 802.11 channel. The channel effective capacity concept is the dual of the effective bandwidth theory. Our approach offers a tool for distributed statistical resource allocation in single hop ad hoc networks, which combines both efficient resource utilization and QoS provisioning to a certain probabilistic limit. Finally, we propose a statistical QoS routing scheme for multihop IEEE 802.11 ad hoc networks. Unlike most of QoS routing schemes in literature, the proposed scheme provides stochastic end-to-end delay guarantee, instead of average delay guarantee, to delay-sensitive bursty traffic sources. Via a cross-layer design approach, the scheme selects the routes based on a geographical on-demand ad hoc routing protocol and checks the availability of network resources by using traffic source and link-layer channel models, incorporating the IEEE 802.11 characteristics and interaction. Our scheme extends the well developed effective bandwidth theory and its dual effective capacity concept to multihop IEEE 802.11 ad hoc networks in order to achieve an efficient utilization of the shared radio channel while satisfying the end-to-end delay bound

    Adaptive medium access control for VoIP services in IEEE 802.11 WLANs

    Get PDF
    Abstract- Voice over Internet Protocol (VoIP) is an important service with strict Quality-of-Service (QoS) requirements in Wireless Local Area Networks (WLANs). The popular Distributed Coordination Function (DCF) of IEEE 802.11 Medium Access Control (MAC) protocol adopts a Binary Exponential Back-off (BEB) procedure to reduce the packet collision probability in WLANs. In DCF, the size of contention window is doubled upon a collision regardless of the network loads. This paper presents an adaptive MAC scheme to improve the QoS of VoIP in WLANs. This scheme applies a threshold of the collision rate to switch between two different functions for increasing the size of contention window based on the status of network loads. The performance of this scheme is investigated and compared to the original DCF using the network simulator NS-2. The performance results reveal that the adaptive scheme is able to achieve the higher throughput and medium utilization as well as lower access delay and packet loss probability than the original DCF

    Adaptive EDCF: Enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks

    Get PDF
    This paper describes an adaptive service differentiation scheme for QoS enhancement in IEEE 802.11 wireless ad-hoc networks. Our approach, called adaptive enhanced distributed coordination function (AEDCF), is derived from the new EDCF introduced in the upcoming IEEE 802.11e standard. Our scheme aims to share the transmission channel efficiently. Relative priorities are provisioned by adjusting the size of the contention window (CW) of each traffic class taking into account both applications requirements and network conditions. We evaluate through simulations the performance of AEDCF and compare it with the EDCF scheme proposed in the 802.11e. Results show that AEDCF outperforms the basic EDCF, especially at high traffic load conditions. Indeed, our scheme increases the medium utilization ratio and reduces for more than 50% the collision rate. While achieving delay differentiation, the overall goodput obtained is up to 25% higher than EDCF. Moreover, the complexity of AEDCF remains similar to the EDCF scheme, enabling the design of cheap implementations
    • …
    corecore