27,377 research outputs found

    An enhanced particle swarm optimization method integrated with evolutionary game theory

    Get PDF
    This paper describes a novel particle swarm optimizer algorithm. The focus of this study is how to improve the performance of the classical particle swarm optimization approach, i.e., how to enhance its convergence speed and capacity to solve complex problems while reducing the computational load. The proposed approach is based on an improvement of particle swarm optimization using evolutionary game theory. This method maintains the capability of the particle swarm optimizer to diversify the particles' exploration in the solution space. Moreover, the proposed approach provides an important ability to the optimization algorithm, that is, adaptation of the search direction, which improves the quality of the particles based on their experience. The proposed algorithm is tested on a representative set of continuous benchmark optimization problems and compared with some other classical optimization approaches. Based on the test results of each benchmark problem, its performance is analyzed and discussed

    Solving Task Scheduling Problem in Cloud Computing Environment Using Orthogonal Taguchi-Cat Algorithm

    Get PDF
    In cloud computing datacenter, task execution delay is no longer accidental. In recent times, a number of artificial intelligence scheduling techniques are proposed and applied to reduce task execution delay. In this study, we proposed an algorithm called Orthogonal Taguchi Based-Cat Swarm Optimization (OTB-CSO) to minimize total task execution time. In our proposed algorithm Taguchi Orthogonal approach was incorporated at CSO tracing mode for best task mapping on VMs with minimum execution time. The proposed algorithm was implemented on CloudSim tool and evaluated based on makespan metric. Experimental results showed for 20VMs used, proposed OTB-CSO was able to minimize makespan of total tasks scheduled across VMs with 42.86%, 34.57% and 2.58% improvement over Minimum and Maximum Job First (Min-Max), Particle Swarm Optimization with Linear Descending Inertia Weight (PSO-LDIW) and Hybrid Particle Swarm Optimization with Simulated Annealing (HPSO-SA) algorithms. Results obtained showed OTB-CSO is effective to optimize task scheduling and improve overall cloud computing performance with better system utilization

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    Particle Swarm Optimization Based Source Seeking

    Get PDF
    Signal source seeking using autonomous vehicles is a complex problem. The complexity increases manifold when signal intensities captured by physical sensors onboard are noisy and unreliable. Added to the fact that signal strength decays with distance, noisy environments make it extremely difficult to describe and model a decay function. This paper addresses our work with seeking maximum signal strength in a continuous electromagnetic signal source with mobile robots, using Particle Swarm Optimization (PSO). A one to one correspondence with swarm members in a PSO and physical Mobile robots is established and the positions of the robots are iteratively updated as the PSO algorithm proceeds forward. Since physical robots are responsive to swarm position updates, modifications were required to implement the interaction between real robots and the PSO algorithm. The development of modifications necessary to implement PSO on mobile robots, and strategies to adapt to real life environments such as obstacles and collision objects are presented in this paper. Our findings are also validated using experimental testbeds.Comment: 13 pages, 12 figure
    corecore