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 In cloud computing datacenter, task execution delay is no longer accidental. 

In recent times, a number of artificial intelligence scheduling techniques are 

proposed and applied to reduce task execution delay. In this study, we 

proposed an algorithm called Orthogonal Taguchi Based-Cat Swarm 

Optimization (OTB-CSO) to minimize total task execution time. In our 

proposed algorithm Taguchi Orthogonal approach was incorporated at CSO 

tracing mode for best task mapping on VMs with minimum execution time. 

The proposed algorithm was implemented on CloudSim tool and evaluated 

based on makespan metric. Experimental results showed for 20VMs used, 

proposed OTB-CSO was able to minimize makespan of total tasks scheduled 

across VMs with 42.86%, 34.57% and 2.58% improvement over Minimum 

and Maximum Job First (Min-Max), Particle Swarm Optimization with 

Linear Descending Inertia Weight (PSO-LDIW) and Hybrid Particle Swarm 

Optimization with Simulated Annealing (HPSO-SA) algorithms. Results 

obtained showed OTB-CSO is effective to optimize task scheduling and 

improve overall cloud computing performance with better system utilization. 
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1. INTRODUCTION 

Cloud computing is an internet-based computing that offers different services (Infrastructure, 

platform, and software as a service) in form of pay-as-you-go [1]−[9]. The existence of enterprises prompt 

competitiveness in term of revenue generation, hence, task scheduling is quite necessary for avoiding some 

level of revenue loss, performance degradation, and breach of service level agreement (SLA) [10],[11]. 

Therefore, dynamic solutions are needed to schedule tasks across heterogeneous virtual machines (VMs), 

where the performance of these solutions can be measured based on i.e., makespan [12]−[15]. Makespan 

minimization is used to measure how effective a task scheduling algorithm in reducing task execution delay. 

To effectively optimize task scheduling in order to minimize task execution time is however considered as 

NP-hard optimization problem [1],[16]. Previous researchers have proposed task scheduling solutions that 

minimized task execution delay, revenue loss and maximized system performance using artificial intelligence 

(AI) techniques [6],[13],[17]−[24]. Cat swarm optimization (CSO) is one of the swarm intelligence (SI) 

techniques that have proven faster than particle swarm optimization in term of speed and convergence [25], 

[26]. CSO can be a potential solution when improved to address task scheduling problem in cloud computing. 

In this study, we incorporated Orthogonal Taguchi based approach [27] at local search (tracing 

mode) of CSO and increased its convergence speed for task mapping on VMs with minimum execution time 
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[6]. In former term, a task scheduling model for the task execution time was proposed. As a result, 

Orthogonal Taguchi Based-Cat Swarm Optimization (OTB-CSO) is proposed that minimized the model [28].  

Contributions for the proposed work are summarized as follow: 

 Development of makespan model for optimal task scheduling for cloud computing environment;  

 Hybridization of Taguchi optimization approach with CSO for optimal task scheduling in cloud 

computing environment; 

 Implementation of the proposed algorithm on CloudSim tool  

 Performance comparison based on makespan metric with percentage improvement. 

The rest of this article is organized as followed: Related works on task scheduling based on Taguchi 

approach in Section 2. Section 3 discussed modelling of the scheduling problem. Cat swarm optimization is 

discussed in section 4. Section 5 discussed the proposed tracing mode process of CSO algorithm. Taguchi 

optimization with proposed OTB-CSO is discussed in Section 6. Section 7 discussed the experimental setup. 

Results obtained are presented in Section 8. Section 9 discussed the results of simulation and Section 10 

concluded the paper. 

 

 

2. RELATED SCHEDULING WORKS BASED TAGUCHI APPROACH 

We reported few existing researchers that explored Taguchi based approach to solved optimization 

problems as followed: [29], used Taguchi method in conjunction with simulation modeling of new 

applications for robotic flexible assembly cells (RFACs) to minimized total tardiness and number of tardy 

jobs. In [8], an improved differential evolutionary algorithm (IDEA) using Taguchi based approach that 

optimized task scheduling and resource allocation problem were presented. In [30], an optimum scheduling 

algorithm based Taguchi approach was presented. In [31], a hybrid no-wait flexible flow shop scheduling 

algorithm that combined non-static genetic algorithm (NSGA-II) with variable neighborhood search (VNS) 

was presented based on Taguchi method and minimized makespan and mean tardiness of jobs. In [32], an 

improved effective genetic algorithm using Taguchi approach was presented that minimized total order 

completion time (makespan). In [33], an algorithm that studied the effect associated with scheduling rules 

based on the performance of a dynamic scheduling in flexible manufacturing systems was presented using 

Taguchi approach. In [34], a Taguchi-based genetic algorithm (TBGA) that solved the problem of job shop 

scheduling was presented.  Based on existing works, this study explored the method used to designed TBGA 

as proposed in [34] for the design of our proposed OTB-CSO algorithm that addressed independent task 

scheduling and achieved minimum makespan of total tasks scheduled across VMs for a dynamic cloud 

environment. 

 

 

3. MATHEMATICAL MODEL OF THE SCHEDULING GOAL 

The formulation of the objective model for the task scheduling problem is based on [35] and [36] as 

follow: Let 𝑇𝐿(𝑖) = {𝑇1, 𝑇2, … . , 𝑇𝑛} denote the set of cloudlets that are independent of each other scheduled 

on virtual machines (VM) 𝑉(𝑗) = {𝑉1, 𝑉2, … . . , 𝑉𝑚}. Suppose a cloudlet 𝑇𝐿(𝑖) is scheduled on a VM 𝑉(𝑗), 

execution time  𝑒𝑥𝑒𝑐(𝑖, 𝑗) of a cloudlet executed by one VM 𝑉(𝑗) is calculated using Equation 1 [9].  

 

𝑒𝑥𝑒𝑐(𝑖, 𝑗) =  
𝑇𝐿 (𝑖)

𝑛𝑝𝑒(𝑗)×𝑉𝑚𝑖𝑝𝑠(𝑗)
 ,                                                                 (1) 

 

∀ 𝑖 ∈ 𝑇𝑎𝑠𝑘, 𝑖 = {1}, 𝑗 ∈ 𝑉𝑚, 𝑗 = {1} 
 

Where: 𝑒𝑥𝑒𝑐(𝑖, 𝑗) is the execution time of running a single cloudlet on one virtual machine; 𝑇𝐿 (𝑖) is 

the length of a cloudlet in million instruction (MI); 𝑉𝑚𝑖𝑝𝑠(𝑗)is the VM processing speeds in million 

instructions per second (MIPS); 𝑛𝑝𝑒(𝑗)is the number of processing elements. When several VMs are 

involved in executing set of cloudlets, the total execution time 𝑇𝑒𝑥𝑒𝑐(𝑖, 𝑗)  of all cloudlets executed on all 

VMs is calculated using Equation 2.  

 

𝑇𝑒𝑥𝑒𝑐(𝑖, 𝑗) = ∑ (
𝑇𝐿(𝑖)

𝑛𝑝𝑒(𝑗)× 𝑉𝑚𝑖𝑝𝑠(𝑗)
)                                                 (2) 

 

∀ 𝑖 = {1,2, … , n}, 𝑗 = {1,2, … . . , m} 
 

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑖𝑛 {max ∑ (
𝑇𝐿(𝑖)

𝑛𝑝𝑒(𝑗)∗𝑉𝑚𝑖𝑝𝑠(𝑗)
) }                                         (3) 
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∀ 𝑖 = {1,2, … , n}, 𝑗 = {1,2, … . . , m} 

 

 

4. CAT SWARM OPTIMIZATION(CSO) 

CSO is one among swarm optimization technique added to the family of swarm intelligence (SI) by 

[17]. The interesting behavior of cat enabled them to observe that cat has both resting and chasing behavior. 

This behavior is modeled into seeking and tracing mode. A control variable called the mixed ratio (MR) is 

used to define the position of the cat i.e., seeking or tracing mode. 

 

4.1. Seeking Mode 

The seeking mode, being a global search aspect of CSO defined cat behavior as per resting, looking 

around, at the same time deciding next position to move to [37]. This mode is shown in Algorithm 1.  

 
Algorithm 1: Seeking Mode Process [9] 

1. Generate Y (where Y = SMP) copies of k-th cat, i.e Zqd where (1≤ q≤Y) and (1≤d≤D) where D is 

the overall dimension. 

2. Change at random the dimension of a cat by applying mutation operator to Zqd. 

3. Determine the fitness values of all changed cats. 

4. Discover best cats (non-dominant) based on their fitness values. 

5. Replace the position of the k-th cat after picking a candidate at random from Y. 

 

4.2. Tracing Mode 

The tracing mode corresponds to local search [9],[37]. It is however presented as follow:  

i. Compute and update cat k-th velocity using new velocity in Equation 4: 

 

𝑉𝐾,𝑑   =   𝑉𝐾,𝑑  +  (𝑐1 ×  𝑟1  ×  (𝑋𝑏𝑒𝑠𝑡𝑑  –  𝑋𝐾,𝑑) )                                                  (4) 

 

𝑑 = 1,2 … . . , 𝑀 
             

Where c; the constant value of acceleration, r; is the uniformly distribution random number in the range 

of [0, 1]. For each iteration, Equation 5 will be used to update the velocity. 

ii. Add new velocity by computing the current (new) position of the k-th cat using Equation 5: 

 

𝑋𝑘,𝑑   =  𝑋𝑘,𝑑   +  𝑉𝑘,𝑑                                                                  (5)  

 

iii. Determine fitness values of all cats. 

iv. Updates achieve contents with best cats.  

 

 

5. PROPOSED CSO TRACING MODE (LOCAL SEARCH) 

Our objective is to minimize makespan of total tasks scheduled across VMs in order to reduce task 

execution delay. As a result, an optimum task scheduling algorithm based on Taguchi is proposed 

[8],[13],[32]. On the other hand, CSO global search (seeking mode) and the local search (tracing mode) are 

carried out independently and that require a very high computation time [2], [9]. In order to overcome this, 

the tracing mode needs to be modified.  The tracing mode operation of cat swarm is re-structured by applying 

Taguchi method as follow:  

i. Generate two velocity sets: 

 

𝑉𝑜𝑘,𝑑(𝑡) = {
𝑉𝑠𝑒𝑡1𝐾,𝑑

(𝑡)   =   𝑉𝐾,𝑑(𝑡 − 1)  + (𝑐1 ×  𝑟1  ×  (𝑋𝑔𝑏𝑒𝑠𝑡𝑑(𝑡 − 1) – 𝑋𝐾,𝑑(𝑡 − 1))

𝑉𝑠𝑒𝑡2𝐾,𝑑
(𝑡)   =   𝑉𝐾,𝑑(𝑡 − 1)  + (𝑐1 ×  𝑟1  ×  (𝑋𝑙𝑏𝑒𝑠𝑡𝑑(𝑡 − 1) – 𝑋𝐾,𝑑(𝑡 − 1))

       (6) 

 

Such that:      𝑉𝑜𝑘,𝑑(𝑡) = {
𝑉𝑠𝑒𝑡1𝑘,𝑑

(𝑡),    𝑖𝑓 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 𝑎𝑟𝑟𝑎𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 "1"

𝑉𝑠𝑒𝑡2𝑘,𝑑
(𝑡),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 

            (7) 

 

Where: 𝑉𝑜𝑘,𝑑 represents two candidate’s velocity sets; 𝑑 is dimension of the solution space; 𝑋𝑔𝑏𝑒𝑠𝑡𝑑 

represents global best the position of the cat; 𝑋𝑙𝑏𝑒𝑠𝑡𝑑  is the local best position of the cat; 𝑟1 represent 

uniform random number in the range of [0,1], 𝑐1  is a constant value of acceleration;  𝑋𝐾,𝑑 represent position 

of the cat and t, is the number of iteration. The size of orthogonal array is determined according to size of task 
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from the generated two velocities, one is chosen to update the original velocity Vk,d each time there is a run 

of the experiment according to Equation 8: 

 

𝑉𝑘,𝑑 = {
𝑚𝑎𝑥 𝑣 , 𝑖𝑓 [𝑉𝑘,𝑑 +  𝑉𝑜𝑘,𝑑(𝑡)] > 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦,

 𝑉𝑘,𝑑 +  𝑉𝑜𝑘,𝑑 , (𝑡)   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            
                                     (8) 

 

ii. Add new velocity by computing the current (new) position of k-th cat using Equation 9. 

 

𝑋𝑘,𝑑   =  𝑋𝑘,𝑑   +  𝑉𝑘,𝑑                                                                    (9) 

 

iii. Determine fitness value of each cat. 

iv. Sum the fitness of all cats according to their generated velocities, compare and select the final velocity to 

formulate the latest velocity.  

 

 

6. TAGUCHI TASK SCHEDULING OPTIMIZATION 

Orthogonal array based Taguchi approach is a good optimization method. The detail pseudocode of 

Taguchi method for our matrix experiment is presented in Algorithm 2 [32]. 

 
Algorithm 2: Taguchi Optimization Algorithm [9] 

1. Select two-level orthogonal array for matrix experiments such that Ln(2
n-1) ∀n≥N+1 and N represent task 

numbers. 

2. Generate two sets of velocities Vset1K,d
(𝑡) and Vset2K,d

 (t) according to Equation (6) 

3. Determine dimension of scheduling problem which corresponds to task number N. 

4. Calculate the fitness values of n experiments in accordance to the Orthogonal 𝐿𝑛(2𝑛−1) array. 

 

The above algorithm is applied at tracing mode of cat swarm optimization (CSO) for minimization 

of makespan. 

 

6.1. OTB-CSO Based Task Scheduling Algorithm 
We developed our OTB-CSO based algorithm to solve the proposed task scheduling problem 

presented at Equation 3 using Algorithm 3 below. 

 
Algorithm 3: OTB-CSO Algorithm 

Start 

1. Initialize associated position, cats’ parameters; MR, mixed ratio; Y, the position of cats, velocity 

of cats and flag of every cat to distinguish cat into seeking and tracing mode. 

2. Determine all require attributes such as virtual machine number, the number of processing 

elements, processing power to calculate cats’ fitness function. 

3. Compute all cats according to defined objective (Fitness) functions in Equation (3)  

4. Compare fitness function of all cats and keep position with best fitness value.  

5. Do 

6.         increment_iteration_number ← t + 1 

7.      If (seeking flag← 𝟏) 

8.             Call algorithm 1 by applying seeking mode process  

9. Else 

10.              Call algorithm 2 by applying tracing mode process based Taguchi approach  

11. Endif  

12.        Choose current best member as Xlbest and corresponding best position as Xpbest  

13. If (Xlbest > Xgbest) 

14.       Xlbest = Xgbest 

15.       Xpbest =Gbest_id // current best position becomes the global best position 

16.       Compute and update the new velocity and position according to (Equation (8) and (9)) 

17. If (termination condition reached) 

18.   Output the position as the best task scheduling pattern (task sequence) that returns the best 

fitness (makespan). 

19. Else  

20. Go to step 6. 

21. Endif 

22. Endif 

End. 
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Determine all required attributes such as: cat size, bandwidth, 

processing elements number, VM speed, to compute cat fitness

Compute all cat fitness function according to defined objective 

function in Equation 3 

Is cat in seeking mode?

Create two velocity sets 

according to equation 6

Update cat position

Apply seeking mode process

Calculate new fitness for each cat, and update achieve

Is stopping criteria attained?

Output best task pattern

Stop
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Figure 1. Flowchart of the OTB-CSO [9] 

 

 

7. EXPERIMENTAL SETUP 

The experiment conducted was carried out based on the following computer specifications 

(Processor: Intel® Core™ i5-5200U CPU@3.60 GHz 3.60GHz; System type: Window 10 (64-bit) x64-

based processor; Memory: GB DDR3L RAM; Hard Disk: 1000 GB (1TB) SATA-3G HDD) and utility 

software (Eclipse-java-luna-SR2-win32-x86-64; Simulation tool: CloudSim 3.0.3) [9]. The choice of 

properties for both virtual machines (VMs), host, and tasks used for the experiment are based on [12] and 

[17], where Datacenter (No. of datacentre: 2; No. of host in a datacentre:1; Host RAM: 2GB; Storage: 1TB; 

Bandwidths:10GB/s; total host processing power: 1000000 MIPS), Cloudlets (Lengths: 100-1000 MIs; No. 

of Cloudlets: 10-100) and VMs (VMs: 20; VMs Monitor: Xen; Ram: 0.5GB; Storage: 10GB; Bandwidth: 

1GB/s; VMs processing power: 1000-10000 MIPS; Processing element: 1 to 2; VM Policy: Time-shared) 

were used. The values of inertia weight and constriction factors (c1, c2) used are based on [38] as shown in 

Table 1.  

 

Table 1. Parameter setting for PSO and CSO 
Algorithm Parameter Value 

PSO Particle size 100 
 Self-recognition coefficients (c1, c2) 2 

 Uniform random number (R1) [0,1] 

 Maximum iteration 1000 
 Inertia weight(W) 0.9-0.4 

 

CSO 

Mixed ration 

Count Dimension to Change 

2% 

5% 
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8. RESULTS 

Ten (10) independent simulation runs with 1000 iterations were carried out on minimum and 

maximum job first (Min-Max) [15], particle swarm optimization with linear descending inertia weight (PSO-

LDIW) [13], hybrid particle swarm optimization with simulated annealing (HPSO-SA) [12] and OTB-CSO 

algorithm for same size of input cloudlets(tasks) and 20VMs. The best, worst and average makespan was 

obtained and tabulated as shown in Table 2.  Performance improvement (PIR) on makespan [10],[39] was 

illustrated in Table 3. 

 

 

Table 2. Comparison of makespan obtained using 20 VMs 

Task 
Min-Max PSO-LDIW HPSO-SA OTB-CSO 

Best Worst Average Best Worst Average Best Worst Average Best Worst Average 

10 14.77 47.07 30.66 14.23 32.90 20.80 6.60 21.52 14.90 7.62 21.49 13.53 

20 31.17 59.74 46.68 23.04 37.20 35.01 12.59 48.39 34.26 10.01 38.94 29.15 

30 48.07 72.02 65.32 42.18 82.51 51.04 26.54 60.57 39.79 32.76 40.76 37.57 
40 79.35 147.54 99.41 51.09 104.95 89.66 49.66 66.86 54.70 45.55 59.76 54.04 

50 104.57 264.13 149.74 111.29 212.71 148.73 65.76 111.53 95.16 62.45 101.14 88.96 

60 186.75 275.98 224.15 176.53 366.20 222.56 97.79 164.09 132.97 89.51 165.51 129.06 
70 249.68 414.22 319.13 146.84 435.72 307.02 138.45 241.01 176.21 109.71 183.81 174.98 

80 386.22 686.22 447.44 158.80 477.95 331.60 186.96 322.03 203.18 154.84 252.37 201.69 

90 452.25 831.66 495.27 252.16 519.89 367.36 245.29 443.03 264.53 213.74 289.62 252.48 
100 530.29 998.66 691.39 384.23 942.97 669.88 367.54 573.86 489.27 302.54 605.31 486.57 

 

 

Table 3. OTB-CSO performance improvement (%) based on Makespan 

 Total Average makespan 
Min-Max PSO-LDIW HPSO-SA OTB-CSO 

2569.19 2243.66 1504.97 1468.03 

20 VMs 

PIR (%)Over I-Min-Max 

PIR (%) Over PSO-LDIW 

PIR (%) Over HPSO-SA 

 

12.67 41.42 

32.92 

42.86 

34.57 

2.45 

 

 

 
 

Figure 2. Graph of makespan obtained 

 

 

9. DISCUSSION 

For each problem size with 1000 iterations, 10 independent simulation runs were carried out based 

on input tasks 10-100 on Min-Max, PSO-LDIW, HPSO-SA, and OTB-CSO algorithm. The makespan and 

performance improvement rate obtained by the four algorithms are reported in Table 2 and Table 3. Figure 2 

showed a graph of average makespan achieved by proposed OTB-CSO algorithm as compared to the three 

existing algorithms. Table 3 unveiled performance improvement achieved using 20 VMs. The performance 

improvements obtained based on makespan are 42.86%, 34.52%, 2.45% over Min-Max, PSO-LDIW and 

HPSO-SA algorithms. Although HPSO-SA outperformed Min-Min and PSO-LDIW, it showed some 

10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

600

700

 A
ve

ra
ge

 m
ak

es
pa

n(
se

c)

Number of Tasks

 MinMax

 PSOLDIW

 HPSOSA

 OTBCSO



IJECE  ISSN: 2088-8708  

 

Solving Task Scheduling Problem in Cloud Computing Environment Using Orthogonal .... (Danlami Gabi) 

1495 

robustness, where OTB-CSO outperformed the HPSO-SA with only 2.45%. The outlined performance of 

OTB-CSO over existing algorithms was attributed to the incorporation of Taguchi Orthogonal approach at 

CSO tracing mode. The Taguchi method is a facilitator, which enables search process within tracing mode of 

the CSO traversed the best solution regions. It helps in guiding our algorithm toward achieving a good 

solution. However, our proposed OTB-CSO tracing mode has actually utilized an Orthogonal array of 

Taguchi method to return search results more suitable by enabling searching efficiency improved [23],[35]. 

Obtained results have significantly shown how our proposed algorithm outperformed better by achieving 

minimum makespan. The improvement (%) showed the reduction in execution time achieved by our 

proposed algorithm. This shows OTB-CSO is effective to optimize task scheduling with better quality of 

service provisioning in cloud computing.  

 

 

10. CONCLUSION 

In this paper, we presented an Orthogonal Taguchi Based-cat swarm optimization (OTB-CSO) 

algorithm for optimum task scheduling that reduced task execution delay in a dynamic cloud computing 

environment. Our proposed OTB-CSO explored local search ability of Taguchi optimization method to 

improve the speed of convergence and quality of solution by achieving minimum makespan. The 

experimental results showed proposed OTB-CSO outperformed Min-Max, PSO-LDIW, and HPSO-SA in 

minimizing the task makespan on VMs. A more study of other computation-based and network-based 

parameters is required with the integration of more advanced concepts such as virtual machine migration, 

energy consumption and to optimize further the algorithm in order to scale with larger workloads is require 

for further confirm the performance of the proposed algorithm.  
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