649 research outputs found

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    An extension of the RiMAX multipath estimation algorithm for ultra-wideband channel modeling

    Get PDF
    This work presents an extension of the high-resolution RiMAX multipath estimation algorithm, enabling the analysis of frequency-dependent propagation parameters for ultra-wideband (UWB) channel modeling. Since RiMAX is a narrowband algorithm, it does not account for the frequency-dependency of the radio channel or the environment. As such, the impact of certain materials in which these systems operate can no longer be considered constant with respect to frequency, preventing an accurate estimation of multipath parameters for UWB communication. In order to track both the specular and dense multipath components (SMC and DMC) over frequency, an extension to the RiMAX algorithm was developed that can process UWB measurement data. The advantage of our approach is that geometrical propagation parameters do not appear or disappear from one sub-band onto the next. The UWB-RiMAX algorithm makes it possible to re-evaluate common radio channel parameters for DMC in the wideband scenario, and to extend the well-known deterministic propagation model comprising of SMC alone, towards a more hybrid model containing the stochastic contributions from the DMC's distributed diffuse scattering as well. Our algorithm was tested with synthetic radio channel models in an indoor environment, which show that our algorithm can match up to 99% of the SMC parameters according to the multipath component distance (MCD) metric and that the DMC reverberation time known from the theory of room electromagnetics can be estimated on average with an error margin of less than 2 ns throughout the UWB frequency band. We also present some preliminary results in an indoor environment, which indicate a strong presence of DMC and thus diffuse scattering. The DMC power represents up to 50% of the total measured power for the lower UWB frequencies and reduces to around 30% for the higher UWB frequencies

    Initial Synchronisation in the Multiple-Input Multiple-Output Aided Single- and Multi-Carrier DS-CDMA as well as DS-UWB Downlink

    No full text
    In this thesis, we propose and investigate code acquisition schemes employing both colocated and cooperative Multiple Input/Multiple Output (MIMO) aided Single-Carrier (SC) and Multi-Carrier (MC) Code Division Multiple Access (CDMA) DownLink (DL) schemes. We study their characteristics and performance in terms of both Non-Coherent (NC) and Differentially Coherent (DC) MIMO scenarios. Furthermore, we also propose iterative code acquisition schemes for the Direct Sequence-Ultra WideBand (DS-UWB) DL. There is a paucity of code acquisition techniques designed for transmit diversity aided systems. Moreover, there are no in-depth studies representing the fundamental characteristics of code acquisition schemes employing both co-located and cooperative MIMOs. Hence we investigate both NC and DC code acquisition schemes in the co-located and cooperative MIMO aided SC and MC DS-CDMA DL, when communicating over spatially uncorrelated Rayleigh channels. The issues of NC initial and post-initial acquisition schemes as well as DC schemes are studied as a function of the number of co-located antennas by quantifying the attainable correct detection probability and mean acquisition time performances. The research of DS-UWB systems has recently attracted a significant interest in both the academic and industrial community. In the DS-UWB DL, initial acquisition is required for both coarse timing as well as code phase alignment. Both of these constitute a challenging problem owing to the extremely short chip-duration of UWB systems. This leads to a huge acquisition search space size, which is represented as the product of the number of legitimate code phases in the uncertainty region of the PN code and the number of legitimate signalling pulse positions. Therefore the benefits of the iterative code acquisition schemes are analysed in terms of the achievable correct detection probability and mean acquisition time performances. Hence we significantly reduce the search space size with the aid of a Tanner graph based Message Passing (MP) technique, which is combined with the employment of beneficially selected generator polynomials, multiple receive antennas and appropriately designed multiple-component decoders. Finally, we characterise a range of two-stage iterative acquisition schemes employing iterative MP designed for a multiple receive antenna assisted DS-UWB DL scenario

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore