2,327 research outputs found

    Towards optimized suppression of dephasing in systems subject to pulse timing constraints

    Full text link
    We investigate the effectiveness of different dynamical decoupling protocols for storage of a single qubit in the presence of a purely dephasing bosonic bath, with emphasis on comparing quantum coherence preservation under uniform vs. non-uniform delay times between pulses. In the limit of instantaneous bit-flip pulses, this is accomplished by establishing a new representation of the controlled qubit evolution, where the resulting decoherence behaviour is directly expressed in terms of the free evolution. Simple analytical expressions are given to approximate the long- and short- term coherence behaviour for both ohmic and supra-ohmic environments. We focus on systems with physical constraints on achievable time delays, with emphasis on pure dephasing of excitonic qubits in quantum dots. Our analysis shows that little advantage of high-level decoupling schemes based on concatenated or optimal design is to be expected if operational constraints prevent pulses to be applied sufficiently fast. In such constrained scenarios, we demonstrate how simple modifications of repeated periodic echo protocols can offer significantly improved coherence preservation in realistic parameter regimes.Comment: 13 figures,1 tabl

    Decoherence reduction via continuous dynamical decoupling: Analytical study of the role of the noise spectrum

    Full text link
    We analyze the robust character against non-static noise of clock transitions implemented via a method of continuous dynamical decoupling (CDD) in a hyperfine Zeeman multiplet in ^{87}\textrm{Rb}. The emergence of features specific to the quadratic corrections to the linear Zeeman effect is evaluated. Our analytical approach, which combines methods of stochastic analysis with time-dependent perturbation theory, allows tracing the decoherence process for generic noise sources. Working first with a basic CDD scheme, it is shown that the amplitude and frequency of the (driving) field of control can be appropriately chosen to force the non-static random input to have a (time-dependent) perturbative character. Moreover, in the dressed-state picture, the effect of noise is described in terms of an operative random variable whose properties, dependent on the driving field, can be analytically characterized. In this framework, the relevance of the spectral density of the fluctuations to the performance of the CDD technique is precisely assessed. In particular, the range of noise correlation times where the method of decoherence reduction is still efficient is identified. The results obtained in the basic CDD framework are extrapolated to concatenated schemes. The generality of our approach allows its applicability beyond the specific atomic system considered

    Reionization in Technicolor

    Full text link
    We present the Technicolor Dawn simulations, a suite of cosmological radiation-hydrodynamic simulations of the first 1.2 billion years. By modeling a spatially-inhomogeneous UVB on-the-fly with 24 frequencies and resolving dark matter halos down to 108M⊙10^8 M_\odot within 12 h−1h^{-1} Mpc volumes, our simulations unify observations of the intergalactic and circumgalactic media, galaxies, and reionization into a common framework. The only empirically-tuned parameter, the fraction fesc,gal(z)f_{\mathrm{esc,gal}}(z) of ionizing photons that escape the interstellar medium, is adjusted to match observations of the Lyman-α\alpha forest and the cosmic microwave background. With this single calibration, our simulations reproduce the history of reionization; the stellar mass-star formation rate relation of galaxies; the number density and metallicity of damped Lyman-α\alpha absorbers (DLAs) at z∼5z\sim5; the abundance of weak metal absorbers; the ultraviolet background (UVB) amplitude; and the Lyman-α\alpha flux power spectrum at z=5.4z=5.4. The galaxy stellar mass and UV luminosity functions are underproduced by ≤2×\leq2\times, suggesting an overly vigorous feedback model. The mean transmission in the Lyman-α\alpha forest is underproduced at z<6z<6, indicating tension between measurements of the UVB amplitude and Lyman-α\alpha transmission. The observed SiIV column density distribution is reasonably well-reproduced (∼1σ\sim 1\sigma low). By contrast, CIV remains significantly underproduced despite being boosted by an intense >4>4 Ryd UVB. Solving this problem by increasing metal yields would overproduce both weak absorbers and DLA metallicities. Instead, the observed strength of high-ionization emission from high-redshift galaxies and absorption from their environments suggest that the ionizing flux from conventional stellar population models is too soft.Comment: 24 pages, 17 figures, accepted to MNRA

    Investigation of Port Fuel Injector Spray Mass Distribution by Laser Induced Fluorescence

    Get PDF
    Modern internal combustion engines have stringent requirements for performance and reduced toxic emissions. The fuel delivery system, and particularly the fuel injectors, have a vital role in reducing unburned hydrocarbons (HC) and carbon monoxide (CO) in exhaust emission. The main goal of this study is to map the spatial and temporal distribution of the spray from a low-pressure gasoline fuel injector. To attain this goal, three tasks were performed: (1) the experimental investigation of the spray oscillation as functions of operating pressure and injector timing, (2) the determination of the appropriate dye/fuel combinations for one particular experimental technique, and (3) the demonstration of the capabilities of a Computational Fluid Dynamics (CFD) code, Fluent, in the dispersed two-phase flow solutions. An experimental technique, planar laser induced fluorescence (PLIF), was employed to investigate the spatial and temporal distribution of the spray mass from a set of four-hole, split-stream port fuel injectors. The spatial and temporal spray evolution in a horizontal cross-section was imaged instantaneously via detection of fluorescence intensities. The lateral displacement of the spray mass is clearly displayed in time sequence via the PLIF images, and the spray instability is shown to be sensitively dependent upon small geometric differences along the internal flow paths. In the course of a study to develop a quantitative PLIF diagnostic for the mass distribution emanating from a liquid fuel injector, spectroscopic results were assembled for certain dye/fuel solutions. Experiments were performed with combinations of hydrocarbon solvents and organic dyes. Results are presented in the form of absorption and emission spectra, including extinction coefficients with error analysis, comparisons with data in the literature, and Stokes shift estimates. A Computational Fluid Dynamics (CFD) code, Fluent, was employed to demonstrate its capabilities in the solution of dispersed two-phase flows. The dispersed two-phase flow consists of discrete elements surrounded by a continuous phase. The continuous phase equations were solved in an Eulerian reference frame. The Lagrangian approach was used to track packets of discrete phase elements. Inputs of the numerical dispersed two-phase flow model were obtained from the conditions of the PLIF experiments. Two cases were solved with the same input and boundary conditions. In the first case the spray consists of droplets with 100 μm diameter. A linear droplet diameter distribution between 40 and 100 μm was specified in the second case. Results indicate the existence of a core region with higher velocity values for both cases. The core region appears at the spray center close to the injection tip. The increase in the spray temperature towards the outlet boundary is larger for the constant droplet diameter case than the linear droplet diameter distribution case. Negligible evaporation is observed in the solution domain for both cases

    Phenomenological Study of Decoherence in Solid-State Spin Qubits due to Nuclear Spin Diffusion

    Full text link
    We present a study of the prospects for coherence preservation in solid-state spin qubits using dynamical decoupling protocols. Recent experiments have provided the first demonstrations of multipulse dynamical decoupling sequences in this qubit system, but quantitative analyses of potential coherence improvements have been hampered by a lack of concrete knowledge of the relevant noise processes. We present simulations of qubit coherence under the application of arbitrary dynamical decoupling pulse sequences based on an experimentally validated semiclassical model. This phenomenological approach bundles the details of underlying noise processes into a single experimentally relevant noise power spectral density. Our results show that the dominant features of experimental measurements in a two-electron singlet-triplet spin qubit can be replicated using a 1/ω21/\omega^{2} noise power spectrum associated with nuclear-spin-flips in the host material. Beginning with this validation we address the effects of nuclear programming, high-frequency nuclear-spin dynamics, and other high-frequency classical noise sources, with conjectures supported by physical arguments and microscopic calculations where relevant. Our results provide expected performance bounds and identify diagnostic metrics that can be measured experimentally in order to better elucidate the underlying nuclear spin dynamics.Comment: Updated References. Related articles at: http://www.physics.usyd.edu.au/~mbiercuk/Publications.htm

    Dynamical decoupling efficiency versus quantum non-Markovianity

    Get PDF
    We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrised by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the dynamical decoupling scheme, leading to a worse coherence preservation. We show that each dynamical decoupling pulse reverses the flow of quantum information and, on this basis, we investigate the connection between dynamical decoupling efficiency and the reservoir spectral density. Finally, in the spirit of reservoir engineering, we investigate the optimum system-reservoir parameters for achieving maximum stationary coherences.Comment: 6 pages, 4 figure
    • …
    corecore