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Abstract
We investigate the relationship between non-Markovianity and the effectiveness of a dynamical
decoupling (DD) protocol for qubits undergoing pure dephasing.We consider an exactmodel in
which dephasing arises due to a bosonic environment with a spectral density of theOhmic class. This
is parametrized by anOhmicity parameter by changingwhichwe canmodel bothMarkovian and
non-Markovian environments. Interestingly, wefind that engineering a non-Markovian environment
is detrimental to the efficiency of theDD scheme, leading to aworse coherence preservation.We show
that eachDDpulse reverses the flowof quantum information and, on this basis, we investigate the
connection betweenDDefficiency and the reservoir spectral density. Finally, in the spirit of reservoir
engineering, we investigate the optimum system-reservoir parameters for achievingmaximum
stationary coherences.

1. Introduction

Dynamical decoupling (DD) techniques for open quantum systems are among themost successfulmethods to
suppress decoherence in qubit systems [1, 2]. Sophisticated control design have superseded earlier schemes such
as the so-called ‘bang–bang’ periodic dynamical decoupling (PDD) [2] and its time-symmetrized version [3–6].
On the one hand concatenatedDD schemes (CDD) have been developed to counter decoherence for general
noise scenarios [7, 8], on the other hand optimal approaches tominimize errors in specific noise settings have
been discovered [9]. In both cases, a high sensitivity of the efficiency of the protocols to the pulse timing has been
demonstrated. As the performance of all DD schemes crucially depends on the timescale of the environment
correlation function, it is clear the important role played by spectral properties of the noise causing decoherence
and introducing errors [10]. In [11], an exactly solvable pure dephasingmodel was used to compare the
efficiency of certainDDprotocols inOhmic, sub-Ohmic and super-Ohmic environments. This is important
because of the increasing ability to engineer experimentally environmental properties, such as the spectral
distribution [12].

During the last few years, a new perspective into themeaning and importance of non-Markovian dynamics
has emerged. This has led to intense activity on fundamentals of open quantum systems, and non-Markovian
systems in particular, culminatingwith the introduction of newdefinitions and characterisations of non-
Markovianity. These definitions and their implications are reviewed in [13] and [14]. In this new framework,
non-Markovian is no longer simply synonymouswith persistence of system-environment correlations with the
latter turning out to be a necessary but not sufficient requirement for non-Markovianity.

The advantage of such new approaches to non-Markovianity is to allow for a quantitative assessment of the
usefulness ofmemory effects in quantum technologies, as they closely follow the formalismof information
theory. A number of results, indeed, support the idea that non-Markovian dynamics ismost suitable for
quantum communication and information processing purposes [15–22].Moreover, very recently it has been
investigated in [23]hownon-Markovianity affects the effectiveness of optimal-control strategies in the case of

OPEN ACCESS

RECEIVED

13 July 2015

REVISED

30October 2015

ACCEPTED FOR PUBLICATION

17November 2015

PUBLISHED

4December 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/12/123004
mailto:ca99@hw.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/12/123004&domain=pdf&date_stamp=2015-12-04
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/12/123004&domain=pdf&date_stamp=2015-12-04
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


amplitude-damping-type channels, finding the existence of regimeswhere non-Markovianity can be either
beneficial or detrimental.

In the present paperwe re-examine a simple example of aDD scheme for a decohering channel in the light of
the abovementioned new approach to non-Markovianity. In particular wewill assess the performance ofDD in
the presence of information back-flow, a common quantifier of non-Markovianity. Futhermore, in analogywith
the perspective which viewsDD as away to engineer environment spectra, here we also study if and how theDD
pulses change the non-Markovian character of the dynamics, e.g. whether they induce information back-flow, as
defined in [24].

The structure of the paper is the following. In section 2we review the basic definitions of non-Markovianity
recently adopted by the open quantum systems community, andwemotivate this approach. In section 3we
introduce the systemof interest, namely the pure dephasingmodel including its exact solution in presence of
PDD. In section 4, we discuss how theDDpulses affect information flow and hencemodify theMarkovian/non-
Markovian character of the dynamics. In section 5, we investigate whether non-Markovian orMarkovian
dynamics are best suited toDD, i.e., lead to optimal performance. In section 6, we discuss in the spirit of
reservoir engineering, the optimum systemparameters for achievingmaximum stationary coherences. Finally
in section 7we summarize our findings and draw the conclusions.

2.Non-Markovian quantumdynamics

The Born–Markov approximation is a cornerstone in the treatment of the dynamics of open quantum systems.
Under the assumption of aweak system-environment coupling one can safely assume that the environment is
hardlymodified by its couplingwith the system. Furthermore ‘big’ environments are characterized by very short
self correlation times. In this scenario the environment does not keepmemory of the state of the system. The
master equations so obtained describe the coarse grained system time evolution, i.e. the systemdynamics on
timescales larger than the environment correlation time. In this framework one refers to an open quantum
systemdynamics asMarkovianwhen one neglects the correlations that build up between system and
environment. However in several circumstances, the timescales over which the environment keepsmemory of
the system arefinite. A paradigmatic example of open systemdynamics where one can study exactly the build up
of correlations between system and environment is pure decoherence [25–27]. Such system is indeed analytically
soluble and one can showhow the timescale of such build up is related to the environment spectral density. In
this framework, non-Markovianity is a property of the noise acting on the system and its signature is the
persistence of system-environment correlations, typically associated to structured spectral density of the
reservoir [29–46]. Indeed the partial persistence of such correlations is the key ingredient ofDD.

In the quantum information theory approach to open quantum systems, however, non-Markovianity is a
property which characterizes the time evolution of the open quantum system,more precisely its dynamicalmap.

tF . By definition, if the open system is initially in a state 0r , its state at a later time t is given by t t 0( )r r= F .
Hence, tF embodies a t-parametrized family of quantum channels. In some special cases this property can be
also related to the formof the generalizedmaster equation. The dynamicalmap, and hence the open system
dynamics, does not depend, however, only on properties of the environment, but crucially also on the type and
strength of interaction between system and environment. Therefore, one cannot properly talk of non-
Markovian environments because the system-environment interactionHamiltonian also plays a key role. A
second point worth recalling is that, as non-Markovianity is a property of the dynamicalmap, it cannot depend
on the initial state considered.

With these consideration inmindwewill nowbriefly recall themainmotivations which have led to the new
definitions of non-Markovianity. The trace-distancemeasure of [24], which paved theway to all the others,
stems from the following desiderata: (i) to give a physical interpretation ofmemory effects in terms of
information back-flow; (ii) to define non-Markovian dynamics independently from the specific structure of the
master equation of the system. The underlying ideawas to have a definition thatwas not based on ematical
properties but rather on the occurrence of physical effects, such as revivals of the information content of a
quantumopen system. This should be contrastedwith themore ematical approach according towhich
Markovian dynamics is described by divisible dynamicalmaps, i.e.,maps satisfying the property t t s s,F = F F ,
with t s,F completely positive and trace preserving (CPTP). Non-Markovian dynamics occurs insteadwhen t s,F
loses complete positivity [13, 47].

The intuitive notion of information back-flow inMarkovian and non-Markovian systems and of its reversal
bymeans ofDD iswell established (see e.g. [48, 49]). However only recently the concept of information flow in
open systemdynamics has been rigorously quantified using information theoretical quantities such as, e.g.,
distinguishability between states [24], coherent information [22], Fisher information [50], mutual information
between input and output state of a channel [51],fidelity [52], and so on and so forth. Correspondingly a
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number of non-Markovianitymeasures orwitnesses have been proposed based on the temporal behaviour of
these quantities. The key property exploited in these definitions is that the time evolution of any of these
quantities, say distinguishability between quantum states, is contractive underCPTPmaps.Hence a temporary
increase of distinguishability, which is physically interpreted as a partial increase in the information content of
the open systemdue tomemory effects, always implies that divisibility of the dynamicalmap is violated.

Let us indicate with I t
0
( )r a quantifier of the information content of the system. This generally depends on

the initial state 0r (or in some cases on pairs of initial states) and, due to contractivity, it is such that
I t I s

0 0
( ) ( )r r , for any s t . The non-Markovianitymeasure I is nowdefined as

I t

t
tmax

d

d
d , 1I

0

0
( )

( ) ò=
¢

¢
¢

r s

r

where the integral is defined over all time intervals for which I t td d 0
0
( ) >r . The quantity I t td d

0
( )r defines

information flow.Hence, information back-flow is indicated by positive values of the derivative of I t
0
( )r .

A remarkable consequence of defining non-Markovianity on this refined basis compared to its traditional
notion is that equation (1) predicts that some known time-non-localmaster equations are indeedMarkovian,
i.e., they entail a dynamicalmap tF such that 0I = [20].

The use of this new characterisation of non-Markovianity has allowed one to prove thatmemory effects,
defined as revivals of information theoretical quantities, are useful for quantum technologies [21, 22, 53, 54],
they directly control the lower bound of uncertainty relations [55], and have a powerful thermodynamical
meaning in terms of revivals of extractable work [56]. Due to these reasonswe believe that the connection
between non-Markovianity as defined in this section andDD isworth exploring. This will be the topic of the
following sections.

It is worthmentioning that, while the variety of non-Markovianitymeasuresmentioned above in general do
not coincide, for a qubit undergoing pure dephasing (i.e., the dynamics studied in this paper) they all consistently
witness non-Markovian behaviour [57].

3. The system

Let us consider the followingmicroscopicHamiltonian describing the local interaction of a qubit (i.e., a two-
level system)with a bosonic reservoir, in units of ÿ [26, 58]

H a a g a g a , 2z
k

k k k
k

z k k k k0 ( ) ( )† †*å åw s w s= + + +

with 0w the qubit frequency, zs the usual z-component of the qubit pseudospin, kw the frequency of the kth
reservoirmode, a ak k( )† the corresponding annihilation (creation) operator and gk the coupling constant
associatedwith the qubit-kthmode interaction. Thismodel can be solved exactly [25–27]. For factorised initial
conditions and in the interaction picture, themaster equation for the qubit densitymatrix ρ is given by

t 2, 3z z0˙ ( ) ( )r g s rs r= -⎡⎣ ⎤⎦
the solution of which yields decay of the coherences (pure dephasing) as follows

t t 0 e , 4t
01 10 01

0( ) ( ) ( ) ( )( )*r r r= = -G

where

t t td d , 50 0( ) ( ) ( )g = G

and

t
I

t1 cos d . 60
0 2

( ) ( ) [ ( )] ( )ò
w
w

w wG = -
¥

Here, I g
j j j

2( ) ( )∣ ∣åw d w w= - is the spectral density function characterizing the interaction of the qubit

with the oscillator bath (this is assumed to be at zero temperature).We consider thewidely studied class of
spectral densities of the form [28]:

I e , 7
s

c
s 1

c( ) ( )w a
w
w

= w w
-

-

with s theOhmicity parameter,α a dimensionless coupling constant and cw a cutoff frequency. Ohmic spectrum
corresponds to s=1, while super-Ohmic spectra correspond to s 1> and sub-Ohmic to s 1< . The expression
for t0( )G can be calculated analytically by inserting equation (7) into equation (6) and is given, for super- and
sub-Ohmic spectra, by [59, 77]
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t
s

s
t s t t s t

1
1 1 cos arctan sin arctan , 8

s
0

2 2( )( )
˜ [ ] ( ( )) ( ( )) ( )a

G =
G
-

- + +
-⎡⎣ ⎤⎦

with s˜ [ ]G the Euler Gamma function.Wenote that equation (8) is written in dimensionless units by introducing

c
1w- as a time scale. For anOhmic spectrum,we canwrite equation (6) as,

t t
2

ln 1 . 90
2( )( ) ( )a

G = +

Let us now address the qubit behaviour in the presence of an arbitrary sequence of instantaneous bang–bang
pulses, each of which beingmodelled as an instantaneousπ-rotation. In such a case, the decoherence process of
the qubit can still be exactly described by replacing t0( )G in equation (4)with amodified decoherence function

t( )G [11]. An exact representation of the controlled decoherence function in terms of its free (uncontrolled)
counterpart has been obtained in [11]. Consider an arbitrary storage time, t, duringwhich a total number ofN
pulses are applied at instants t t t, ,n f1{ }¼ ¼ , with t t t t0 ... f1 2< < < < < . As shownbyUhrig [60, 61], the
controlled coherence function t( )G can beworked out as,

t

t t t
t t t t n N

t t t

,
, 0 ,

,
10n n n

N f

0 1

1( )
( )
( )
( )

( )


G =
G
G < < <
G <

+

⎧
⎨⎪
⎩⎪

where, for n N1   ,

t t

t t

t t t

2 1

4 1

2 1 1 . 11

n
m

n
m

m

m

n

j m
m j

m j

m

n
m n

m
n

1

1
0

2
0

1

1
0 0

( )
( )

( )

( ) ( )

( )

( ) ( ) ( ) ( )

å

å å

å

G = - G

+ G - -

+ - G - + - G

=

+

= <

- +

=

+

In the next section, wewill use t( )G as given above to investigate the dynamics in terms of information flow
and quantumnon-Markovianity. In the followingwe set the dimensionless coupling constantα, appearing in
equations (7)–(9), to unity as the introduction of this front-factor only leads to a rescaling of both the
decoherence factor t0( )G and the controlled function t( )G . Sincewe are interested in comparing decoherence in
different scenarios (that is, e.g., unpulsed case withDD-pulsed case), this factor is irrelevant. Although this is
true for pure dephasing, the coupling constant plays a role for other open systems dynamics, e.g. dissipative
dynamics, where a perturbative analysis of the decay is needed.Wenote that while this expression for t( )G has
been derived for a qubit interacting with a quantumbosonic bath, its exact representation holds also for
arbitraryGaussian phase randomisation processes. Hence themain conclusions of our study are applicable also
to experimental settings such as trapped ions [62, 63] and solid-state qubits [31, 64, 65].

4. Pulse-induced informationflow reversal

To characterize the open dynamics under study from the viewpoint of information flow,wemake use of awell-
knownmeasure of non-Markovianity introduced in [24] and known as the BLP or trace-distancemeasure. This
is based on the time evolution of the trace distance between a pair of initial states of the open system, this being a
measure of their relative distinguishability. In aMarkovian process the distinguishability between any two
quantum states decreasesmonotonically in time, indicating a loss of information about the systemdue to
continuousmonitoring of the environment. In a non-Markovian process, in contrast, it can partly regrow for
some time intervals, indicating information back-flow into the system. For the systemhere considered the non-
Markovianitymeasure of [24] has a simple analytical expression [66]:

t td e , 12t

0
( ) ( )( ) ò g= -

g<

-G

where t( )g (see equation (5)) is themodified decoherence rate and the integral, as suggested by our notation, is
extended over the time intervals such that t 0( )g < . Hence, one can immediately associate information back-
flowwith negative values of t( )g . The non-Markovianity defined in this way for the free systemhas been studied
previously (see [67]). In particular, it was shown analytically that, for t t0( ) ( )G = G and in the case of spectral
density (7), themeasure takes non-zero values if and only if s 2> [68]. This result establishes a connection
between the definitions of non-Markovianity discussed in section 2—in particular the BLPmeasure—and the
formof the environmental spectral density for theOhmic class given in equation (7). Having this inmind, we
sometimes refer in the following toMarkovian (non-Markovian) dynamics to indicate the s 2 (s 2> )
regimes.
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The controlled decoherence function tn( )G (see equation (11))may be rewritten as:

t t t t t2 2 . 13n n n n n1 1 0( ) ( )( ) ( ) ( )G = -G + G + G -- -

Hence, it is straightforward to define a relation connecting tn n( )g , namely td dnG at themoment tnwhen the
system is pulsed, and the corresponding quantity at the previous instant [10]:

t t , 14n n n n1( ) ( ) ( )g g= - -

where for n N1   ,

t t t t2 1 1 . 15n
m

n
m n

m
n

1
0 0( )( ) ( ) ( ) ( ) ( )åg g g= - - + -

=

+

Interestingly, equation (14) clearly shows that information flow is reversedwhenever a pulse interrupting the
free-systemdynamics is applied.Hence, strictly speaking, aMarkovian open systemdynamics will always be
turned by the pulsing into a non-Markovian one (although in some cases the resulting non-Markovianity
measure can take negligible values).

Infigure 1, we study the time evolution of coherences of the purely dephasing system subject to periodicDD.
For the sake of simplicity, we focus here on equally spacedDDpulses applied at times t n tn = D , with
n 1, 2, 3,= ¼.We call t̄ thefirst time instant at which t 00 (¯)g = , i.e., after which information flow is
temporarily reversed (in the unperturbed dynamics). This time always exists for s 2> [68]. For divisible
(Markovian)dynamics, in the Zeno regime, the shorter is the interval between theDDpulses the higher is the
efficiency of theDD scheme [69, 70]. For non-Markovian ones the same holds, provided that t t̄D < . This is a
straightforward consequence of the quantumZeno effect whose connectionwithDDhas been shown in [71]. In
figure 1, we consider the cases s 1= and s 4= as paradigmatic instances of aMarkovian andnon-Markovian
(free) dynamics respectively. For each of them,we consider both the case of a short and large pulsing period
(short-pulsing and long-pulsing regimes).

Wefirst note that, for any time t t̄< , the unperturbed coherences are always higher for s 2 (Markovian
case) than for s 2> (non-Markovian case). Since the effect of the pulses is always to reverse information flow
and therefore preserve better coherences, we conjecture that, in the short-pulsing regime,MarkovianOhmic
environments aremore favourable to protect coherences viaDDcompared to non-Markovian ones. In the
Markovian case, however, DD inhibits loss of coherence compared to the unpulsed free evolution. This is
confirmed byfigure 1(i) showing that the pulsing is fully successful in inhibiting the coherences decay for the
s 1= case, while it is not in the s 4= case.

Instead, in the long-pulsing regime (see figure 1(ii)), the efficiency of theDD scheme here considered is
drastically reduced in both theMarkovian and non-Markovian case and greatly depends on the details of the
dynamics, hence no general conclusion can be drawn. In particular, in this regime, reversing information flow
can have disastrous consequences for non-Markovian environments: if the first pulse occurs during a time of re-
coherence (information back-flow), it will indeed induce an even faster coherences decay. This effect can be seen

Figure 1.Time evolution of the controlled coherence e tn( )-G for: (i) tD =0.3 (short pulse spacing regime) and (ii) tD =3 (long
pulse spacing regime), in units of c

1w- . TheOhmicity parameters are s=1 (blue dashed line) and s=4 (red solid line), which are
respectively an instance ofMarkovian and non-Markovian dynamics. In the inset, we display the free uncontrolled coherences e t0( )-G ,
which shows in particular that t 1¯ = for s 4= . All times are expressed in units of c

1w- .
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infigure 1(ii), where in particular we study the case s 4= for a pulse spacing such that t t̄D > . One can note
that the occurrence of the first pulse induces an extremely rapid deterioration of coherences (when compared to
the unpulsed free dynamics).

5. Efficiency versus non-Markovianitymeasure

To elucidate the relationship between the non-Markovian character of the free dynamics and the efficiency of
DD techniques, we perfom anumerical investigation based on their respectivemeasures.Most studies onDD
quantify the efficiency ofDD sequences bymeans of the fidelity function,measuring the overlap between the
state at time t and the initial state 0 0 0( ) ∣ ( ) ( )∣r = F ñáF , namely

t t0 0 , 16( ) ( )∣ ( )∣ ( ) ( ) r= áF F ñ

where 1 2 1  . In theweak-coupling approximation, the coherences decay as t e R t t( ) ( ) = - , whereR(t)
is the overlap interval of the noise spectral density and the filter function generated by theDD sequence [46]. In
this framework, fidelity is defined as:

t 0 0 2 0 0 e , 17R t t
11

2
22

2
12 21( ) ( ) ( ) ( ) ( ) ( )( ) r r r r= + + -

with ijr the densitymatrix elements of the initial state. It is worth stressing that in this paperwe use an exact

approach that allows us towrite themost general formof the decoherence factor as t e t( ) ( ) = -G , with t( )G
given by equation (10). In theweak coupling limit t( )G reduces to R t t( ) and one obtains equation (17).

In the following, we are interested in quantifying howwell theDD sequences protect the system from
decoherence at all times and independently of the initial state. This is because we aim to study the efficiency of the
DD scheme in connection to a property of the dynamicalmap, along the lines of what it is donewhen
introducing non-Markovianitymeasures. Rather than the fidelity, which is both time-dependent and state
dependent, we therefore introduce the following quantifier ofDD efficiency:

t
t

e
. 18f

t
t

f

0

f

( ) ( )
( )


ò

=

-G

Themeasure is bounded between zero (ineffectiveDD) and unity (ideal DD) and is based only on preserving the
evolution of coherence undergoingDDup to some time tf, which is assumed to be the duration of theDD
pulsing scheme. Infigure 2, we compare theDD efficiencymeasure , as defined by equation (18)with t( )G
given by equation (10), and the non-Markovianity  , as defined by equation (12)with free decoherence t0( )G
given by equation (6), as functions of theOhmicity parameter s.We focus here on the short-pulsing regime
where the efficiency of theDD scheme is the highest. The plot clearly shows a sharp decrease in  with the onset
of non-Markovianity for s 2> . This quantity, however, is only sensitive to theMarkovian to non-Markovian
crossover (s= 2) and not to the value of  for s 2> , as it keeps decreasingmonotonically while  has a clear
peak around s 3.7 . For increasingly longer times tf, the efficiency becomes increasingly sensitive to the onset
of non-Markovian dynamics, indeed, for tf  ¥, we conjecture that  will decrease to smaller and smaller
values for s 2> .

Figure 2.Non-Markovianitymeasure  of the free (unpulsed) dynamics (black solid line) and dynamical decoupling efficiency 
against theOhmicity parameter s for t 0.3D = (in units of c

1w- ). Dynamical decoupling efficiency is plotted for t 9.9fcw = (red dot),
19.8 (green square) and 30 (blue diamond). For comparison purposes, we have rescaled  to itsmaximumvalue.
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Note that the representative values of tf infigure 2were chosen to be not too short. A too short value of tfwill
indeed yield an almost uniformbehaviour of  as function of theOhmicity parameter s since in such a case the
coherences will still be high for any value of s.We have thus focused on the behaviour of  for sufficiently long
times tf, since this is actually whatmatter themost, namely, how to preserve coherences for long times. In
figure 2, we have therefore considered increasingly long times until the limit of our computational capabilities.
The plots clearly indicate a similar tendency. Infigure 3, we study how the above comparison between the non-
Markovianitymeasure andDD efficiency depends on the time intervals tD . One can see that the behaviour
displayed infigure 3 is rather insensitive to the time interval tD .We have numerically checked that this
conclusion is not dependent on the specific value chosen for tf infigure 3. Summarizing, figures 2 and 3 show
that themaximum efficiency of PDD is obtained for pulse spacings t t̄D < withMarkovian dynamics (s 2< ).
As the formalismused to describe the dynamics holds for any arbitraryGaussian phase randomization process
our conclusions hold in general for these types ofmodels [11].

For t t̄D > and for s 2> , non-Markovian effects become relevant in the overall free dynamics and the
amount of coherence preservationwill depend on a combined effect of both the presence of information back-
flow connected to the unperturbed dynamics and effect of the pulses. A strong dependence on the time interval

tD aswell as on tf emerges in this case fromnumerical studies. This can be traced back to the fact that the
unperturbed dynamics for t is characterized by subsequent time intervals inwhich the information flow changes
sign.Hence pulses will enhance decoherence or preserve coherence depending onwhether they occur in a time
interval inwhich information flow is positive or negative, respectively.

6.Non-Markovianity engineering byDD

Markovian open quantum systems have been extensively studied and are verywell characterized. ForMarkovian
dynamics fulfilling the semigroup property [58], the Lindblad–Gorini–Kossakowski–Sudarshan theorem
identifies the general formofmaster equation leading to a physical evolution of the system. TheMonte Carlo
wave function approach provides both a powerful numerical technique to study the dynamics ofMarkovian
systems and a deep interpretation in terms of quantum jumps for individual quantum systems, like ions or cavity
modes. Quantum state diffusionmethods allow to unravel the dynamics in terms of homodyne or heterodyne
measurements on the environment.

For non-Markovian open quantum systemsmany fundamental questions are still open. The generalisation
of the Lindblad–Gorini–Kossakowski–Sudarshan theorem to even simple non-Markovian systems is still an
open problem. The existence of ameasurement scheme interpretation guaranteeing a physicalmeaning to
individual trajectories is still under investigation. The extension of theMonte Carlowave function approach is
only known for certain classes of time-localmaster equations [72]. Thefirst experimental studies aimed at
characterizing non-Markovian dynamics have only recently been conducted [73–76]. This witnesses the interest
in developing techniques for engineering non-Markovian dynamics to be used as testbeds for experimental and
theoretical investigations.

The results of section 4 show that, in addition to its traditional employment as amethod to hamper
decoherence, DD can be exploited as a simple tool for engineering non-Markovian dynamics. AMarkovian

Figure 3.Dynamical decoupling efficiency  against theOhmicity parameter s for different values of the pulsing period (in units of
c

1w- ): t 0.3D = (red), t 0.4D = (green) , t 0.5D = (blue), t 0.8D = (purple) and t 1D = (brown). The final pulse is applied at
t N t 10f max c

1 w= D - , where Nmax is themaximumnumber of pulses that can be appliedwithin the time interval t0 10 c
1  w- .
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open systemwill, indeed, always becomenon-Markovianwhen subject to PDD.More in general, PDDwill
change the non-Markovian character of the open system,whether its free dynamics wasMarkovian or not. Yet,
the details of the pulse-induced non-Markovianity will depend on both the pulsing parameters (e.g., the pulse
spacing) and the environmental parameters (e.g., theOhmicity parameter).

In this section, we investigate the non-Markovianity induced by PDDby comparing the non-Markovianity
measure  in absence and presence of pulses, in both the short-pulse and the long-pulse regimes introduced in
section 3. Aswe noticed there, in the short-pulse regime, for any value of theOhmicity parameter s, the effect of
the pulses is to create non-Markovianity by inducing information back-flow,when it was initially absent, or in
any case to increase the non-Markovian character. This can be seen infigure 4(i). In the long-pulsing regime the
situation ismore variegated as pulses can also, under certain conditions, decrease the non-Markovian character
of the dynamics, as shown in the example offigure 4(ii).

To conclude, any system subject to PDDwill provide a testbed for further investigating non-Markovian
dynamics by inducing information back-flow, independently of the value of theOhmicity parameter s. It is
worth noticing once again that engineering non-Markovianity here refers specifically to the information-
theoretical approachwhich has been proven useful for quantum technologies [21, 22, 53, 54]. In this sense our
results should not simply understood as another variant of thewell known idea thatDDmodifies the reservoir
spectrumbymaking itmore structured.On the contrary, they are an exploration on the ability to controllably
modify and enhance quantities such as the channel capacities, mutual information, coherent information,
Fisher information, etc. This in turn provides away to control the efficiency of quantum communication
protocols, quantummetrology, andwork extraction, just tomention a few.

7. Long-time dynamics

While in the previous sections we have shed light on the connection between the spectral density shape and the
DDeffectiveness for short times, we now turn our focus to the asymptotic behaviour of the pulsed system.With
reservoir engineering inmind, we investigate the connection between the stationary coherences and the formof
the spectral density function (specifically, the value of theOhmicity parameter s).More precisely, we study
which value of s yieldsmaximum long-time stationary coherences, for given pulses time spacing tD and number
of pulses n.We consider specifically the case inwhich theDD sequence stops at afinite tf, after which the system
is subjected to the usual decoherence arising from its unavoidable environment. The case inwhich tf goes to
infinity is neither analytically nor numerically treatable.

We begin by noticing that in absence of pulses the phenomenon of coherence trapping occurs for s 1> ,
while for s 1 coherences are asymptotically lost as t  ¥. The controlled coherence function for long times

N ( )G ¥ , recalling t tN( ) ( )G = G for t tf < , whereN is the total number of pulses, is as follows (using
s 10( ) [ ]G ¥ = G - [77]):

Figure 4.Non-Markovianitymeasure against theOhmicity parameter s for the dynamically decoupled system (blue dotted line) for
time intervals (i) t 0.3D = and (ii) t 3D = (in units of c

1w- ) and the non-Markovianity for the free system (red solid line). The final
pulse is applied at time t 9fcw = .We draw attention to the fact that 0 ¹ for all values of swhen the system is subject toDDbutmay
take very small values as shown in (ii) for s2 2.6 < .
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Figure 5 shows how themaximum stationary coherence in theDD scheme depends on the pulsing interval as a
function of s and for different numbers of pulses n. From [77]we know that, for the unperturbed system, the
optimalOhmicity parameter, i.e., the value of s leading tomaximum long-time coherences, lies in the non-
Markovian parameter range (s 2.46 ). In presence of pulses, this continues to be true, independently of the
number of pulses n, only in the short-pulsing regime, as one can see for the exemplary value t 0.3cw D = (first
columnof dots infigure 5).

It is interesting to compare the stationary coherences to the coherences present at time tf, i.e., at the end of
the pulse sequence.We have noted in section 4 that, forfinite tf,Markovian reservoirs lead to better coherence
preservationwhen the interval between pulses is short. Hence the choice of optimal s depends onwhetherwe are
interested in the coherences at the end of the pulse sequence or in the asymptotic stationary coherences.

As shown infigure 5, when the interval between pulses increases,Markovian reservoirs become better suited
to long-time coherences preservation formost values of n, with the only exception of the somewhat special case
n=1 (red dots) and also n=2 (orange dots) for t 3cw D = .

8. Conclusions

To conclude, our results provide indications on howone should engineer an environment which is optimal for
DD techniques.We have explored the connection between information flow andDD to shed light on the
phenomena responsible for revivals in the coherence.Having efficient error correction inmind, we have paid
special attention to the short-pulses regime. In this case, we have found that aMarkovian environment is
necessary to optimize theDDperformance. However, the highest preserved coherence at the end of the
decoupling sequence is not necessarily the highest stationary coherence (long time limit), i.e., the optimal
Ohmicity parameter is not the same for the two regimes. Ourwork provides the first exploration of the interplay
between non-Markovianity in terms of information flow, as defined in [22, 24, 47, 51] and the efficiency ofDD
schemes.With a shift in perspective, it also indicates howDD techniques can be harnessed to engineer quantum
non-Markovianity and control it.
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Figure 5.Ohmic parameter s required to achievemaximum stationary coherence as a function of the (rescaled) pulse interval spacing
tD for n=1 (red dots), n=2 (orange), n=5, (green), n=10 (blue), n=20 (purple) and n=30 (grey). The freeMarkovian (non-

Markovian regime) corresponds to the shaded (unshaded) region, while the red line shows the value of theOhmic parameter for the
free stationary coherence.We have ignored stationary coherences withmaximumvalues below the order of 10−4.
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