research

Reionization in Technicolor

Abstract

We present the Technicolor Dawn simulations, a suite of cosmological radiation-hydrodynamic simulations of the first 1.2 billion years. By modeling a spatially-inhomogeneous UVB on-the-fly with 24 frequencies and resolving dark matter halos down to 108M10^8 M_\odot within 12 h1h^{-1} Mpc volumes, our simulations unify observations of the intergalactic and circumgalactic media, galaxies, and reionization into a common framework. The only empirically-tuned parameter, the fraction fesc,gal(z)f_{\mathrm{esc,gal}}(z) of ionizing photons that escape the interstellar medium, is adjusted to match observations of the Lyman-α\alpha forest and the cosmic microwave background. With this single calibration, our simulations reproduce the history of reionization; the stellar mass-star formation rate relation of galaxies; the number density and metallicity of damped Lyman-α\alpha absorbers (DLAs) at z5z\sim5; the abundance of weak metal absorbers; the ultraviolet background (UVB) amplitude; and the Lyman-α\alpha flux power spectrum at z=5.4z=5.4. The galaxy stellar mass and UV luminosity functions are underproduced by 2×\leq2\times, suggesting an overly vigorous feedback model. The mean transmission in the Lyman-α\alpha forest is underproduced at z<6z<6, indicating tension between measurements of the UVB amplitude and Lyman-α\alpha transmission. The observed SiIV column density distribution is reasonably well-reproduced (1σ\sim 1\sigma low). By contrast, CIV remains significantly underproduced despite being boosted by an intense >4>4 Ryd UVB. Solving this problem by increasing metal yields would overproduce both weak absorbers and DLA metallicities. Instead, the observed strength of high-ionization emission from high-redshift galaxies and absorption from their environments suggest that the ionizing flux from conventional stellar population models is too soft.Comment: 24 pages, 17 figures, accepted to MNRA

    Similar works