12,302 research outputs found

    The Knowledge Life Cycle for e-learning

    No full text
    In this paper, we examine the semantic aspects of e-learning from both pedagogical and technological points of view. We suggest that if semantics are to fulfil their potential in the learning domain then a paradigm shift in perspective is necessary, from information-based content delivery to knowledge-based collaborative learning services. We propose a semantics driven Knowledge Life Cycle that characterises the key phases in managing semantics and knowledge, show how this can be applied to the learning domain and demonstrate the value of semantics via an example of knowledge reuse in learning assessment management

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap

    Ontology-based domain modelling for consistent content change management

    Get PDF
    Ontology-based modelling of multi-formatted software application content is a challenging area in content management. When the number of software content unit is huge and in continuous process of change, content change management is important. The management of content in this context requires targeted access and manipulation methods. We present a novel approach to deal with model-driven content-centric information systems and access to their content. At the core of our approach is an ontology-based semantic annotation technique for diversely formatted content that can improve the accuracy of access and systems evolution. Domain ontologies represent domain-specific concepts and conform to metamodels. Different ontologies - from application domain ontologies to software ontologies - capture and model the different properties and perspectives on a software content unit. Interdependencies between domain ontologies, the artifacts and the content are captured through a trace model. The annotation traces are formalised and a graph-based system is selected for the representation of the annotation traces

    Developing domain ontologies for course content

    Get PDF
    Ontologies have the potential to play an important role in instructional design and the development of course content. They can be used to represent knowledge about content, supporting instructors in creating content or learners in accessing content in a knowledge-guided way. While ontologies exist for many subject domains, their quality and suitability for the educational context might be unclear. For numerous subjects, ontologies do not exist. We present a method for domain experts rather than ontology engineers to develop ontologies for use in the delivery of courseware content. We will focus in particular on relationship types that allow us to model rich domains adequately

    Content-driven design and architecture of E-learning applications

    Get PDF
    E-learning applications combine content with learning technology systems to support the creation of content and its delivery to the learner. In the future, we can expect the distinction between learning content and its supporting infrastructure to become blurred. Content objects will interact with infrastructure services as independent objects. Our solution to the development of e-learning applications – content-driven design and architecture – is based on content-centric ontological modelling and development of architectures. Knowledge and modelling will play an important role in the development of content and architectures. Our approach integrates content with interaction (in technical and educational terms) and services (the principle organization for a system architecture), based on techniques from different fields, including software engineering, learning design, and knowledge engineering

    Developing domain ontologies for courseware content

    Get PDF
    Ontologies have the potential to play an important role in educational technology. They can be used to represent knowledge about educational content, supporting instructors in creating content or learners in accessing content in a knowledge-guided way. While ontologies exist for many subject domains, their quality and suitability for the educational context might be unclear. For numerous subjects, ontologies do not exist. We present a method for domain experts rather than ontology engineers to develop ontologies for use in the delivery of courseware content. We will focus in particular on relationship types that allow us to model rich domains adequately. Our investigation will be supported by a case study

    A layered framework for pattern-based ontology evolution

    Get PDF
    The challenge of ontology-driven modelling of information components is well known in both academia and industry. In this paper, we present a novel approach to deal with customisation and abstraction of ontology-based model evolution. As a result of an empirical study, we identify a layered change operator framework based on the granularity, domain-specificity and abstraction of changes. The implementation of the operator framework is supported through layered change logs. Layered change logs capture the objective of ontology changes at a higher level of granularity and support a comprehensive understanding of ontology evolution. The layered change logs are formalised using a graph-based approach. We identify the recurrent ontology change patterns from an ontology change log for their reuse. The identified patterns facilitate optimizing and improving the definition of domain-specific change patterns

    A group learning management method for intelligent tutoring systems

    Get PDF
    In this paper we propose a group management specification and execution method that seeks a compromise between simple course design and complex adaptive group interaction. This is achieved through an authoring method that proposes predefined scenarios to the author. These scenarios already include complex learning interaction protocols in which student and group models use and update are automatically included. The method adopts ontologies to represent domain and student models, and object Petri nets to specify the group interaction protocols. During execution, the method is supported by a multi-agent architecture
    corecore