264 research outputs found

    Structured recursive separator decompositions for planar graphs in linear time (Extended Abstract)

    Get PDF
    Given a triangulated planar graph G on n vertices and an integer r < n, an r-division of G with few holes is a decomposition of G into O(n/r) regions of size at most r such that each region contains at most a constant number of faces that are not faces of G (also called holes), and such that, for each region, the total number of vertices on these faces is O( √ r). We provide an algorithm for computing r-divisions with few holes in linear time. In fact, our algorithm computes a structure, called decomposition tree, which represents a recursive decomposition of G that includes r-divisions for essentially all values of r. In particular, given an exponentially increasing sequence r = (r1, r2, ...), our algorithm can produce a recursive r-division with few holes in linear time. r-divisions with few holes have been used in efficient algorithms to compute shortest paths, minimum cuts, and maximum flows. Our linear-time algorithm improves upon the decomposition algorithm used in the state-of-the-art algorithm for minimum st-cut (Italiano, Nussbaum, Sankowski, and Wulff-Nilsen, STOC 2011), removing one of the bottlenecks in the overall running time of their algorithm (analogously for minimum cut in planar and bounded-genus graphs)

    Decremental Single-Source Reachability in Planar Digraphs

    Full text link
    In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog2nloglogn)O(n\log^2{n}\log\log{n}) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log2nloglogn)O(\log^2 n \log \log n), which improves upon a previously known O(n)O(\sqrt{n}) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page

    Fast and Compact Exact Distance Oracle for Planar Graphs

    Full text link
    For a given a graph, a distance oracle is a data structure that answers distance queries between pairs of vertices. We introduce an O(n5/3)O(n^{5/3})-space distance oracle which answers exact distance queries in O(logn)O(\log n) time for nn-vertex planar edge-weighted digraphs. All previous distance oracles for planar graphs with truly subquadratic space i.e., space O(n2ϵ)O(n^{2 - \epsilon}) for some constant ϵ>0\epsilon > 0) either required query time polynomial in nn or could only answer approximate distance queries. Furthermore, we show how to trade-off time and space: for any Sn3/2S \ge n^{3/2}, we show how to obtain an SS-space distance oracle that answers queries in time O((n5/2/S3/2)logn)O((n^{5/2}/ S^{3/2}) \log n). This is a polynomial improvement over the previous planar distance oracles with o(n1/4)o(n^{1/4}) query time

    Better Tradeoffs for Exact Distance Oracles in Planar Graphs

    Full text link
    We present an O(n1.5)O(n^{1.5})-space distance oracle for directed planar graphs that answers distance queries in O(logn)O(\log n) time. Our oracle both significantly simplifies and significantly improves the recent oracle of Cohen-Addad, Dahlgaard and Wulff-Nilsen [FOCS 2017], which uses O(n5/3)O(n^{5/3})-space and answers queries in O(logn)O(\log n) time. We achieve this by designing an elegant and efficient point location data structure for Voronoi diagrams on planar graphs. We further show a smooth tradeoff between space and query-time. For any S[n,n2]S\in [n,n^2], we show an oracle of size SS that answers queries in O~(max{1,n1.5/S})\tilde O(\max\{1,n^{1.5}/S\}) time. This new tradeoff is currently the best (up to polylogarithmic factors) for the entire range of SS and improves by polynomial factors over all the previously known tradeoffs for the range S[n,n5/3]S \in [n,n^{5/3}]

    Space-Efficient Graph Coarsening with Applications to Succinct Planar Encodings

    Get PDF
    We present a novel space-efficient graph coarsening technique for n-vertex planar graphs G, called cloud partition, which partitions the vertices V(G) into disjoint sets C of size O(log n) such that each C induces a connected subgraph of G. Using this partition ? we construct a so-called structure-maintaining minor F of G via specific contractions within the disjoint sets such that F has O(n/log n) vertices. The combination of (F, ?) is referred to as a cloud decomposition. For planar graphs we show that a cloud decomposition can be constructed in O(n) time and using O(n) bits. Given a cloud decomposition (F, ?) constructed for a planar graph G we are able to find a balanced separator of G in O(n/log n) time. Contrary to related publications, we do not make use of an embedding of the planar input graph. We generalize our cloud decomposition from planar graphs to H-minor-free graphs for any fixed graph H. This allows us to construct the succinct encoding scheme for H-minor-free graphs due to Blelloch and Farzan (CPM 2010) in O(n) time and O(n) bits improving both runtime and space by a factor of ?(log n). As an additional application of our cloud decomposition we show that, for H-minor-free graphs, a tree decomposition of width O(n^{1/2 + ?}) for any ? > 0 can be constructed in O(n) bits and a time linear in the size of the tree decomposition. A similar result by Izumi and Otachi (ICALP 2020) constructs a tree decomposition of width O(k ?n log n) for graphs of treewidth k ? ?n in sublinear space and polynomial time
    corecore