41,105 research outputs found

    Stratified decision forests for accurate anatomical landmark localization in cardiac images

    Get PDF
    Accurate localization of anatomical landmarks is an important step in medical imaging, as it provides useful prior information for subsequent image analysis and acquisition methods. It is particularly useful for initialization of automatic image analysis tools (e.g. segmentation and registration) and detection of scan planes for automated image acquisition. Landmark localization has been commonly performed using learning based approaches, such as classifier and/or regressor models. However, trained models may not generalize well in heterogeneous datasets when the images contain large differences due to size, pose and shape variations of organs. To learn more data-adaptive and patient specific models, we propose a novel stratification based training model, and demonstrate its use in a decision forest. The proposed approach does not require any additional training information compared to the standard model training procedure and can be easily integrated into any decision tree framework. The proposed method is evaluated on 1080 3D highresolution and 90 multi-stack 2D cardiac cine MR images. The experiments show that the proposed method achieves state-of-theart landmark localization accuracy and outperforms standard regression and classification based approaches. Additionally, the proposed method is used in a multi-atlas segmentation to create a fully automatic segmentation pipeline, and the results show that it achieves state-of-the-art segmentation accuracy

    Multi-Entity Dependence Learning with Rich Context via Conditional Variational Auto-encoder

    Full text link
    Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. The availability of rich contextual information requires a nimble learning scheme that tightly integrates with deep neural networks and has the ability to capture correlation structures among exponentially many outcomes. We propose MEDL_CVAE, which encodes a conditional multivariate distribution as a generating process. As a result, the variational lower bound of the joint likelihood can be optimized via a conditional variational auto-encoder and trained end-to-end on GPUs. Our MEDL_CVAE was motivated by two real-world applications in computational sustainability: one studies the spatial correlation among multiple bird species using the eBird data and the other models multi-dimensional landscape composition and human footprint in the Amazon rainforest with satellite images. We show that MEDL_CVAE captures rich dependency structures, scales better than previous methods, and further improves on the joint likelihood taking advantage of very large datasets that are beyond the capacity of previous methods.Comment: The first two authors contribute equall

    Machine learning to analyze single-case data : a proof of concept

    Get PDF
    Visual analysis is the most commonly used method for interpreting data from singlecase designs, but levels of interrater agreement remain a concern. Although structured aids to visual analysis such as the dual-criteria (DC) method may increase interrater agreement, the accuracy of the analyses may still benefit from improvements. Thus, the purpose of our study was to (a) examine correspondence between visual analysis and models derived from different machine learning algorithms, and (b) compare the accuracy, Type I error rate and power of each of our models with those produced by the DC method. We trained our models on a previously published dataset and then conducted analyses on both nonsimulated and simulated graphs. All our models derived from machine learning algorithms matched the interpretation of the visual analysts more frequently than the DC method. Furthermore, the machine learning algorithms outperformed the DC method on accuracy, Type I error rate, and power. Our results support the somewhat unorthodox proposition that behavior analysts may use machine learning algorithms to supplement their visual analysis of single-case data, but more research is needed to examine the potential benefits and drawbacks of such an approach

    Mondrian Forests for Large-Scale Regression when Uncertainty Matters

    Full text link
    Many real-world regression problems demand a measure of the uncertainty associated with each prediction. Standard decision forests deliver efficient state-of-the-art predictive performance, but high-quality uncertainty estimates are lacking. Gaussian processes (GPs) deliver uncertainty estimates, but scaling GPs to large-scale data sets comes at the cost of approximating the uncertainty estimates. We extend Mondrian forests, first proposed by Lakshminarayanan et al. (2014) for classification problems, to the large-scale non-parametric regression setting. Using a novel hierarchical Gaussian prior that dovetails with the Mondrian forest framework, we obtain principled uncertainty estimates, while still retaining the computational advantages of decision forests. Through a combination of illustrative examples, real-world large-scale datasets, and Bayesian optimization benchmarks, we demonstrate that Mondrian forests outperform approximate GPs on large-scale regression tasks and deliver better-calibrated uncertainty assessments than decision-forest-based methods.Comment: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS) 2016, Cadiz, Spain. JMLR: W&CP volume 5
    • …
    corecore