5 research outputs found

    A hybrid noise suppression filter for accuracy enhancement of commercial speech recognizers in varying noisy conditions

    Get PDF
    Commercial speech recognizers have made possible many speech control applications such as wheelchair, tone-phone, multifunctional robotic arms and remote controls, for the disabled and paraplegic. However, they have a limitation in common in that recognition errors are likely to be produced when background noise surrounds the spoken command, thereby creating potential dangers for the disabled if recognition errors exist in the control systems. In this paper, a hybrid noise suppression filter is proposed to inter-face with the commercial speech recognizers in order to enhance the recognition accuracy under variant noisy conditions. It intends to decrease the recognition errors when the commercial speech recognizers are working under a noisy environment. It is based on a sigmoid function which can effectively enhance noisy speech using simple computational operations, while a robust estimator based on an adaptive-network-based fuzzy inference system is used to determine the appropriate operational parameters for the sigmoid function in order to produce effective speech enhancement under variant noisy conditions.The proposed hybrid noise suppression filter has the following advantages for commercial speech recognizers: (i) it is not possible to tune the inbuilt parameters on the commercial speech recognizers in order to obtain better accuracy; (ii) existing noise suppression filters are too complicated to be implemented for real-time speech recognition; and (iii) existing sigmoid function based filters can operate only in a single-noisy condition, but not under varying noisy conditions. The performance of the hybrid noise suppression filter was evaluated by interfacing it with a commercial speech recognizer, commonly used in electronic products. Experimental results show that improvement in terms of recognition accuracy and computational time can be achieved by the hybrid noise suppression filter when the commercial recognizer is working under various noisy environments in factories

    Speech Enhancement Strategy for Speech Recognition Microcontroller under Noisy Environments

    Get PDF
    Industrial automation with speech control functions is generally installed with a speech recognition sensor which is used as an interface for users to articulate speech commands. However, recognition errors are likely to be produced when background noise surrounds the command spoken into the speech recognition microcontrollers. In this paper, a speech enhancement strategy is proposed to develop noise suppression filters in order to improve the accuracy of speech recognition microcontrollers. It uses a universal estimator, namely a neural network, to enhance the recognition accuracy of microcontrollers by integrating better signals processed by various noise suppression filters, where a global optimization algorithm, namely an intelligent particle swarm optimization, is used to optimize the inbuilt parameters of the neural network in order to maximize accuracy of speech recognition microcontrollers working within noisy environments. The proposed approach overcomes the limitations of the existing noise suppression filters intended to improve recognition accuracy. The performance of the proposed approach was evaluated by a speech recognition microcontroller, which is used in electronic products with speech control functions. Results show that the accuracy of the speech recognition microcontroller can be improved using the proposed approach, when working under low signal to noise ratio conditions in the industrial environments of automobile engines and factory machines
    corecore