3,885,728 research outputs found

    Learning Deep Structured Models

    Full text link
    Many problems in real-world applications involve predicting several random variables which are statistically related. Markov random fields (MRFs) are a great mathematical tool to encode such relationships. The goal of this paper is to combine MRFs with deep learning algorithms to estimate complex representations while taking into account the dependencies between the output random variables. Towards this goal, we propose a training algorithm that is able to learn structured models jointly with deep features that form the MRF potentials. Our approach is efficient as it blends learning and inference and makes use of GPU acceleration. We demonstrate the effectiveness of our algorithm in the tasks of predicting words from noisy images, as well as multi-class classification of Flickr photographs. We show that joint learning of the deep features and the MRF parameters results in significant performance gains.Comment: 11 pages including referenc

    Approximated structured pseudospectra

    Get PDF
    Pseudospectra and structured pseudospectra are important tools for the analysis of matrices. Their computation, however, can be very demanding for all but small-matrices. A new approach to compute approximations of pseudospectra and structured pseudospectra, based on determining the spectra of many suitably chosen rank-one or projected rank-one perturbations of the given matrix is proposed. The choice of rank-one or projected rank-one perturbations is inspired by Wilkinson's analysis of eigenvalue sensitivity. Numerical examples illustrate that the proposed approach gives much better insight into the pseudospectra and structured pseudospectra than random or structured random rank-one perturbations with lower computational burden. The latter approach is presently commonly used for the determination of structured pseudospectra

    Structured Random Matrices

    Full text link
    Random matrix theory is a well-developed area of probability theory that has numerous connections with other areas of mathematics and its applications. Much of the literature in this area is concerned with matrices that possess many exact or approximate symmetries, such as matrices with i.i.d. entries, for which precise analytic results and limit theorems are available. Much less well understood are matrices that are endowed with an arbitrary structure, such as sparse Wigner matrices or matrices whose entries possess a given variance pattern. The challenge in investigating such structured random matrices is to understand how the given structure of the matrix is reflected in its spectral properties. This chapter reviews a number of recent results, methods, and open problems in this direction, with a particular emphasis on sharp spectral norm inequalities for Gaussian random matrices.Comment: 46 pages; to appear in IMA Volume "Discrete Structures: Analysis and Applications" (Springer

    Recovering Structured Probability Matrices

    Get PDF
    We consider the problem of accurately recovering a matrix B of size M by M , which represents a probability distribution over M2 outcomes, given access to an observed matrix of "counts" generated by taking independent samples from the distribution B. How can structural properties of the underlying matrix B be leveraged to yield computationally efficient and information theoretically optimal reconstruction algorithms? When can accurate reconstruction be accomplished in the sparse data regime? This basic problem lies at the core of a number of questions that are currently being considered by different communities, including building recommendation systems and collaborative filtering in the sparse data regime, community detection in sparse random graphs, learning structured models such as topic models or hidden Markov models, and the efforts from the natural language processing community to compute "word embeddings". Our results apply to the setting where B has a low rank structure. For this setting, we propose an efficient algorithm that accurately recovers the underlying M by M matrix using Theta(M) samples. This result easily translates to Theta(M) sample algorithms for learning topic models and learning hidden Markov Models. These linear sample complexities are optimal, up to constant factors, in an extremely strong sense: even testing basic properties of the underlying matrix (such as whether it has rank 1 or 2) requires Omega(M) samples. We provide an even stronger lower bound where distinguishing whether a sequence of observations were drawn from the uniform distribution over M observations versus being generated by an HMM with two hidden states requires Omega(M) observations. This precludes sublinear-sample hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample estimators for quantities such as the entropy rate of HMMs
    corecore