3,885,728 research outputs found
Recommended from our members
Beginner mathematics teachers learning to teach and assess advanced problem solving
Learning Deep Structured Models
Many problems in real-world applications involve predicting several random
variables which are statistically related. Markov random fields (MRFs) are a
great mathematical tool to encode such relationships. The goal of this paper is
to combine MRFs with deep learning algorithms to estimate complex
representations while taking into account the dependencies between the output
random variables. Towards this goal, we propose a training algorithm that is
able to learn structured models jointly with deep features that form the MRF
potentials. Our approach is efficient as it blends learning and inference and
makes use of GPU acceleration. We demonstrate the effectiveness of our
algorithm in the tasks of predicting words from noisy images, as well as
multi-class classification of Flickr photographs. We show that joint learning
of the deep features and the MRF parameters results in significant performance
gains.Comment: 11 pages including referenc
Approximated structured pseudospectra
Pseudospectra and structured pseudospectra are important tools for the analysis of matrices. Their computation, however, can be very demanding for all but small-matrices. A new approach to compute approximations of pseudospectra and structured pseudospectra, based on determining the spectra of many suitably chosen rank-one or projected rank-one perturbations of the given matrix is proposed. The choice of rank-one or projected rank-one perturbations is inspired by Wilkinson's analysis of eigenvalue sensitivity. Numerical examples illustrate that the proposed approach gives much better insight into the pseudospectra and structured pseudospectra than random or structured random rank-one perturbations with lower computational burden. The latter approach is presently commonly used for the determination of structured pseudospectra
Structured Random Matrices
Random matrix theory is a well-developed area of probability theory that has
numerous connections with other areas of mathematics and its applications. Much
of the literature in this area is concerned with matrices that possess many
exact or approximate symmetries, such as matrices with i.i.d. entries, for
which precise analytic results and limit theorems are available. Much less well
understood are matrices that are endowed with an arbitrary structure, such as
sparse Wigner matrices or matrices whose entries possess a given variance
pattern. The challenge in investigating such structured random matrices is to
understand how the given structure of the matrix is reflected in its spectral
properties. This chapter reviews a number of recent results, methods, and open
problems in this direction, with a particular emphasis on sharp spectral norm
inequalities for Gaussian random matrices.Comment: 46 pages; to appear in IMA Volume "Discrete Structures: Analysis and
Applications" (Springer
Recovering Structured Probability Matrices
We consider the problem of accurately recovering a matrix B of size M by M ,
which represents a probability distribution over M2 outcomes, given access to
an observed matrix of "counts" generated by taking independent samples from the
distribution B. How can structural properties of the underlying matrix B be
leveraged to yield computationally efficient and information theoretically
optimal reconstruction algorithms? When can accurate reconstruction be
accomplished in the sparse data regime? This basic problem lies at the core of
a number of questions that are currently being considered by different
communities, including building recommendation systems and collaborative
filtering in the sparse data regime, community detection in sparse random
graphs, learning structured models such as topic models or hidden Markov
models, and the efforts from the natural language processing community to
compute "word embeddings".
Our results apply to the setting where B has a low rank structure. For this
setting, we propose an efficient algorithm that accurately recovers the
underlying M by M matrix using Theta(M) samples. This result easily translates
to Theta(M) sample algorithms for learning topic models and learning hidden
Markov Models. These linear sample complexities are optimal, up to constant
factors, in an extremely strong sense: even testing basic properties of the
underlying matrix (such as whether it has rank 1 or 2) requires Omega(M)
samples. We provide an even stronger lower bound where distinguishing whether a
sequence of observations were drawn from the uniform distribution over M
observations versus being generated by an HMM with two hidden states requires
Omega(M) observations. This precludes sublinear-sample hypothesis tests for
basic properties, such as identity or uniformity, as well as sublinear sample
estimators for quantities such as the entropy rate of HMMs
- …
