143 research outputs found

    Fuzzy-Logic based Effective Contour Representation of Occluded Objects

    Get PDF
    We present a fuzzy-based network for the sharpening of object contour even in the presence of occlusion. The contour representation of objects can be effectively handled by the structure tensor method. This work proposes an occlusion detection and filling strategy using the square patch selection method. Based on the interpolation method, the fuzzy-assisted square patch selection can be used to fill the occluded pixels. Due to the occluded pixels, the depth map may have anomalies in the low-texture and high-exposure areas. Before converting a depth map to a point cloud, it is essential to filter out the outliers in the depth map to obtain a more accurate point cloud. To improve the precision of the depth map, improved occlusion detection and management procedures is required.The occlusion regions may be confirmed through belief propagation, which may produce noisy results in occluded regions, sharp objects, and object boundaries. We strived to build a model that differentiates the occluded pixels from others by exploiting sharp boundary transitions. We have used a stereo geometry structure to develop the required deep neural models to handle occlusion. We built the model by creating layers for every pipeline component and made it to learn the contour representation model using an adaptive fuzzy-based approach. In existing approaches, the bias must be properly predicted with the Gaussian distribution. The proposed model eradicated the pixel bleeding effect by exploiting the bimodal distribution with Gaussian and SMD (Stereo Mixture Density) functions and by finding smoothening bias.The suitable depth values were assigned to the occluded regions obtained. The experimental results demonstrated that the proposed approach generates more stable depth maps with fewer constraints than the existing methods. The experimental results were compared with the standard SMD-Net and other state-of-the-art models

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Contrast enhancement and exposure correction using a structure-aware distribution fitting

    Get PDF
    Realce de contraste e correção de exposição são úteis em aplicações domésticas e técnicas, no segundo caso como uma etapa de pré-processamento para outras técnicas ou para ajudar a observação humana. Frequentemente, uma transformação localmente adaptativa é mais adequada para a tarefa do que uma transformação global. Por exemplo, objetos e regiões podem ter níveis de iluminação muito diferentes, fenômenos físicos podem comprometer o contraste em algumas regiões mas não em outras, ou pode ser desejável ter alta visibilidade de detalhes em todas as partes da imagem. Para esses casos, métodos de realce de imagem locais são preferíveis. Embora existam muitos métodos de realce de contraste e correção de exposição disponíveis na literatura, não há uma solução definitiva que forneça um resultado satisfatório em todas as situações, e novos métodos surgem a cada ano. Em especial, os métodos tradicionais baseados em equalização adaptativa de histograma sofrem dos efeitos checkerboard e staircase e de excesso de realce. Esta dissertação propõe um método para realce de contraste e correção de exposição em imagens chamado Structure-Aware Distribution Stretching (SADS). O método ajusta regionalmente à imagem um modelo paramétrico de distribuição de probabilidade, respeitando a estrutura da imagem e as bordas entre as regiões. Isso é feito usando versões regionais das expressões clássicas de estimativa dos parâmetros da distribuição, que são obtidas substituindo a mé- dia amostral presente nas expressões originais por um filtro de suavização que preserva as bordas. Após ajustar a distribuição, a função de distribuição acumulada (CDF) do modelo ajustado e a inversa da CDF da distribuição desejada são aplicadas. Uma heurística ciente de estrutura que detecta regiões suaves é proposta e usada para atenuar as transformações em regiões planas. SADS foi comparado a outros métodos da literatura usando métricas objetivas de avaliação de qualidade de imagem (IQA) sem referência e com referência completa nas tarefas de realce de contraste e correção de exposição simultâneos e na tarefa de defogging/dehazing. Os experimentos indicam um desempenho geral superior do SADS em relação aos métodos comparados para os conjuntos de imagens usados, de acordo com as métricas IQA adotadas.Contrast enhancement and exposure correction are useful in domestic and technical applications, the latter as a preprocessing step for other techniques or for aiding human observation. Often, a locally adaptive transformation is more suitable for the task than a global transformation. For example, objects and regions may have very different levels of illumination, physical phenomena may compromise the contrast at some regions but not at others, or it may be desired to have high visibility of details in all parts of the image. For such cases, local image enhancement methods are preferable. Although there are many contrast enhancement and exposure correction methods available in the literature, there is no definitive solution that provides a satisfactory result in all situations, and new methods emerge each year. In special, traditional adaptive histogram equalization-based methods suffer from checkerboard and staircase effects and from over enhancement. This dissertation proposes a method for contrast enhancement and exposure correction in images named Structure-Aware Distribution Stretching (SADS). The method fits a parametric model of probability distribution to the image regionally while respecting the image structure and edges between regions. This is done using regional versions of the classical expressions for estimating the parameters of the distribution, which are obtained by replacing the sample mean present in the original expressions by an edge-preserving smoothing filter. After fitting the distribution, the cumulative distribution function (CDF) of the adjusted model and the inverse of the CDF of the desired distribution are applied. A structure-aware heuristic to indicate smooth regions is proposed and used to attenuate the transformations in flat regions. SADS was compared with other methods from the literature using objective no-reference and full-reference image quality assessment (IQA) metrics in the tasks of simultaneous contrast enhancement and exposure correction and in the task of defogging/dehazing. The experiments indicate a superior overall performance of SADS with respect to the compared methods for the image sets used, according to the IQA metrics adopted

    Robust Surface Reconstruction from Point Clouds

    Get PDF
    The problem of generating a surface triangulation from a set of points with normal information arises in several mesh processing tasks like surface reconstruction or surface resampling. In this paper we present a surface triangulation approach which is based on local 2d delaunay triangulations in tangent space. Our contribution is the extension of this method to surfaces with sharp corners and creases. We demonstrate the robustness of the method on difficult meshing problems that include nearby sheets, self intersecting non manifold surfaces and noisy point samples

    Investigations on the properties and estimation of earth response operators from EM sounding data

    Get PDF
    Incl. 3 reprints at backAvailable from British Library Document Supply Centre- DSC:D82993 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Multiscale Simulation of Breaking Wave Impacts

    Get PDF

    A discrete graph Laplacian for signal processing

    Get PDF
    In this thesis we exploit diffusion processes on graphs to effect two fundamental problems of image processing: denoising and segmentation. We treat these two low-level vision problems on the pixel-wise level under a unified framework: a graph embedding. Using this framework opens us up to the possibilities of exploiting recently introduced algorithms from the semi-supervised machine learning literature. We contribute two novel edge-preserving smoothing algorithms to the literature. Furthermore we apply these edge-preserving smoothing algorithms to some computational photography tasks. Many recent computational photography tasks require the decomposition of an image into a smooth base layer containing large scale intensity variations and a residual layer capturing fine details. Edge-preserving smoothing is the main computational mechanism in producing these multi-scale image representations. We, in effect, introduce a new approach to edge-preserving multi-scale image decompositions. Where as prior approaches such as the Bilateral filter and weighted-least squares methods require multiple parameters to tune the response of the filters our method only requires one. This parameter can be interpreted as a scale parameter. We demonstrate the utility of our approach by applying the method to computational photography tasks that utilise multi-scale image decompositions. With minimal modification to these edge-preserving smoothing algorithms we show that we can extend them to produce interactive image segmentation. As a result the operations of segmentation and denoising are conducted under a unified framework. Moreover we discuss how our method is related to region based active contours. We benchmark our proposed interactive segmentation algorithms against those based upon energy-minimisation, specifically graph-cut methods. We demonstrate that we achieve competitive performance
    corecore