14 research outputs found

    Structure induction by lossless graph compression

    Full text link
    This work is motivated by the necessity to automate the discovery of structure in vast and evergrowing collection of relational data commonly represented as graphs, for example genomic networks. A novel algorithm, dubbed Graphitour, for structure induction by lossless graph compression is presented and illustrated by a clear and broadly known case of nested structure in a DNA molecule. This work extends to graphs some well established approaches to grammatical inference previously applied only to strings. The bottom-up graph compression problem is related to the maximum cardinality (non-bipartite) maximum cardinality matching problem. The algorithm accepts a variety of graph types including directed graphs and graphs with labeled nodes and arcs. The resulting structure could be used for representation and classification of graphs.Comment: 10 pages, 7 figures, 2 tables published in Proceedings of the Data Compression Conference, 200

    Comparing biological networks via graph compression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparison of various kinds of biological data is one of the main problems in bioinformatics and systems biology. Data compression methods have been applied to comparison of large sequence data and protein structure data. Since it is still difficult to compare global structures of large biological networks, it is reasonable to try to apply data compression methods to comparison of biological networks. In existing compression methods, the uniqueness of compression results is not guaranteed because there is some ambiguity in selection of overlapping edges.</p> <p>Results</p> <p>This paper proposes novel efficient methods, CompressEdge and CompressVertices, for comparing large biological networks. In the proposed methods, an original network structure is compressed by iteratively contracting identical edges and sets of connected edges. Then, the similarity of two networks is measured by a compression ratio of the concatenated networks. The proposed methods are applied to comparison of metabolic networks of several organisms, <it>H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae,</it> and <it>B. subtilis,</it> and are compared with an existing method. These results suggest that our methods can efficiently measure the similarities between metabolic networks.</p> <p>Conclusions</p> <p>Our proposed algorithms, which compress node-labeled networks, are useful for measuring the similarity of large biological networks.</p

    Compressing Graphs by Grammars

    Get PDF
    corecore