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Abstract In today’s interconnected digital world, targeted
attacks have become a serious threat to conventional com-
puter systems andcritical infrastructure alike.Many researchers
contribute to the fight against network intrusions or mali-
cious software by proposing novel detection systems or
analysis methods. However, few of these solutions have a
particular focus on Advanced Persistent Threats or similarly
sophisticated multi-stage attacks. This turns finding domain-
appropriate methodologies or developing new approaches
into amajor research challenge. To overcome these obstacles,
we present a structured review of semantics-awareworks that
have a high potential for contributing to the analysis or detec-
tion of targeted attacks. We introduce a detailed literature
evaluation schema in addition to a highly granular model
for article categorization. Out of 123 identified papers, 60
were found to be relevant in the context of this study. The
selected articles are comprehensively reviewed and assessed
in accordance to Kitchenham’s guidelines for systematic lit-
erature reviews. In conclusion, we combine new insights and
the status quo of current research into the concept of an ideal
systemic approach capable of semantically processing and
evaluating information from different observation points.
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1 Introduction

IT infrastructures and corporate networks are threatened by
a plethora of different attacks. Not long ago, research and
industry almost entirely focused on the detection and pre-
vention of widespread malware attacks without a specific
target. Signature-based detection techniques have been the
de facto standard against this kind of threat throughout the
past 30 years and current virus scanners still rely primarily
on malware signatures for detection. The fundamental idea
behind these techniques is founded on the assumption that
one malicious campaign targets thousands or even millions
of hosts. Once the payload or carrier has been found on one
system, a generic signature or behavior pattern of the threat
can be extracted and used on other systems for detection.

In recent years, however, a new generation of attack has
emerged. Advanced Persistent Threats (APTs) or Advanced
Targeted Attacks (ATAs) can be characterized as tailored to
one specific entity. These types of attacks are driven by differ-
ent motivations and often cause significantly more damage
than bulk attacks; often they are performed for espionage
or sabotage reasons and are orchestrated by experts. Sev-
eral cases in recent history have shown that targeted attacks
sometimes operate undiscovered by their victims for many
months or even years [37,59,63,83,141]. The prime exam-
ple, Stuxnet, which targeted programmable logic controllers
(PLCs) of sensitive industrial systems, was active for at least
3 years until discovery. It utilized four zero-day exploits to
achieve its ultimate goal [134]. According to a Symantec
study [47], Stuxnet infected close to 100,000 systems across
115 countries. Its quasi successor, Duqu, also targeted indus-
trial control systems (ICS) but was used only for information
gathering [78]. Systems of 10 organizations in at least eight
countries were reportedly affected [25].
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On the espionage side, the Regin trojan is believed to
have been used for global, systematic campaigns since at
least 2008 [139]. Other examples include Flame [79], Mahdi
[130], and Gauss [80]. These strains are currently used for
cyber-espionage inMiddle Eastern countries and, depending
on the variant, are capable of stealing passwords and cook-
ies, recording network traffic, keystrokes, microphone audio,
and even entire Sykpe conversations [103].

ATAs and APTs are increasingly affecting less promi-
nent targets as well. In 2013 alone, “economic espionage
and theft of trade secrets cost the American economy more
than $19 billion. Over the past 4 fiscal years, the number
of arrests related to economic espionage and theft of trade
secrets overseen by the FBI’s Economic Espionage Unit has
almost doubled, indictments havemore than tripled, and con-
victions have increased sixfold. Halfway through fiscal year
2013, the number of open investigations is runningmore than
30 % above the total from 4 years ago” [112].

Modern cyber-threats are no longer limited to a single
malware executable but often comprise targeted, multi-stage
attacks that are difficult to spot using only file- and signature-
basedmalware detection systems.The reasonwhy thesemore
conventional detection methods are less effective against
ATAs is rooted in the fact that targeted attacks are tailor-made
to the organization they seek to penetrate: Binary patterns of
the responsible malware are unlikely to exist at the time of
attack. Anti-virus (AV) products are effective in the defense
against known exploit carriers or ill-considered user actions
but struggle with hitherto unknown malware [42]. The rise
of state-sponsored attacks poses another serious challenge
as high-moneyed actors are able to invest significantly more
time and effort into designing and developing hard-to-detect
malware. Furthermore, government bodies may compel AV
vendors to whitelist their respective espionage tools.

This makes it necessary to explore novel techniques for
tactical threat intelligence and malicious activity detection
on multiple layers, allowing for a defense in depth approach
to malware detection through the use of multiple observation
points deployed throughout the infrastructure.

This paper provides a systematic overview of four layers
of tactical and operational threat intelligence and the vari-
ous solutions current research offers: host-based solutions,
network-based solutions, multi-source solutions, and gen-
eral or supporting solutions. The main goal is to present a
comprehensive review of proposed approaches that directly
or indirectly facilitate target attack detection or analysis
through the information they collect. We identify domains
and methodologies that can be used in a holistic APT/ATA
detection framework. A special focus lies on semantics-
aware approaches that are key to distinguishing common
from advanced threats, which are well recognized as defeat-
ing traditional signature-based detection. The sophisticated
and multipartite nature of modern cyber-attacks is one of the

main reasons why a defender needs to consider host-based,
network-based and hybrid monitoring tools when it comes
to capturing suspicious events that can later be analyzed and
interpreted.While there are numerous solutions that focus on
specific attack aspects such as malware infection or network
intrusion, only few consider the greater picture. In order to
truly understand a targeted attack, it becomes necessary to not
only focus on malicious software or intrusion detection but
to use every suitable tool at one’s disposal. This paper eval-
uates existing research retrieved from six academic search
engines using an incremental search and refinement process
utilized with a view to integrating the results into a holistic
framework for APT detection and assessment. Existingmod-
els and technologies were methodically categorized by their
capabilities, purpose as well as several operational parame-
ters with the aim to establish their applicability to a general
concept of an ATA defense framework presented as part of
the concluding discussion.

The contribution of this paper includes:

– Concept of anATAdetection framework and introduction
of system design checklist specifically tailored to the task
of identifying targeted attacks;

– Schema for review and categorization of intrusion detec-
tion, analysis, correlation, and threat intelligence domain
literature and tools;

– Identification of semantics-aware solutions that could
help distinguish common from advanced attacks;

– Comprehensive review of host-based, network-based,
and multi-source data providers and analysis approaches
that, if utilized accordingly, could contribute to targeted
attack detection.

The remainder of the paper is structured as follows: In
Sect. 2 we introduce APTs and ATAs, define frequent terms,
and provide some background on models and use cases. Sec-
tion 3 specifies the research questions, review method, and
various literature collection criteria. In Sect. 4 we introduce
the categorization schema used in the review process. Sec-
tion 5 provides specific background and reviews the selected
papers. Section 6 contains comprehensive comparison charts
and breaks down the results. In Sect. 7, we discuss our find-
ings and present the concept of a defense framework that
encompasses most APT attack phases.

2 APT taxonomy and semantics

2.1 Modeling advanced persistent threats

APTs are not necessarily limited to a tailored piece of mal-
ware, but often encompass various stages with their own
respective methods [67,93]. For example, spearfishing and
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Fig. 1 APT phases as defined by [67]

malicious websites are common approaches to delivering a
malicious payload to a target system [94,134]. RATs embed-
ded in a Trojan horse are then often used to take control of
a machine. In addition, targeted attacks reportedly employ
zero-day vulnerabilities [18,134].

In order to better understand the complex nature of tar-
geted attacks and to map specific exploits to a broader goal,
APTs are often modeled as a multi-stage process. Hutchins
et al. [67] expand on the military concept of target engage-
ment and define seven typical phases, as seen in Fig. 1:

Reconnaissance, such as network scans, mapping proce-
dures, employee profiling, and search for suitable zero-day
exploits, weaponization, i.e. the development of targeted
malware and the set-up of malicious services, delivery via
various channels, exploitation, such as the activation of mal-
ware and the use of the previously weaponized payload to
exploit a vulnerability, installation, i.e. establishing a per-
sistent presence, command and control communication, and
actions on objective, which include the primary malicious
task as well as exfiltration and clean-up activities.

Giuara and Wang [56] as well as De Vries et al. [37]
use similar kill chain models to describe APTs – only the
naming and some stage boundaries differs. Independent of
taxonomy, APTs and ATAs are complex attacks that, unlike
bulk malware or fire-and-forget network attacks, carefully
consider the target’s system environment, security measures,
and assets.

Adversary actions in each of the phases are possibly coun-
tered by a number of defense mechanisms. For example, the
installation on the target system might be detected by a dedi-
cated host-based intrusion detection system (HIDS). Each of
themodels helps to plan network defensemeasures as well as
illustrates some data providers that are promising to use in an
attack detection system. This is the reason why we decided
to include solutions from different domains instead of just
malware detection tools.

2.2 Semantics-aware and semantics-based approaches

The semantics of an attack is an important factor for its
identification and analysis. Generally speaking, semantics
is the study of meaning. It is widely used in both technical
and non-technical fields such as linguistics, philosophy, and
information theory. When applied to computer science, it is
often synonymouswith determining execution paths of a pro-
gram. In that case, the meaning of an artificial programming
language as opposed to a natural language is evaluated. The
mathematical model of computation is defined using one of
the following techniques [32,158]:

Denotational semantics describes the formalization of
programming languages into mathematical objects. This
includes the translation of a phrase into another, strictly
formal language. Operational semantics encompasses the
description of the execution and its correctness by e.g.
describing machine state transitions. Axiomatic semantics
describes meaning and proves correctness through rules of
inference that map input to output properties. It is important
to note that these strands are highly dependent on each other
and are often used in concert.

In this paper we differentiate semantics-aware and
semantics-based approaches. We define semantics-aware
solutions as considerate of the goal, means, and specifics
of an attack. The overall premise can be summarized as the
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analysis ofmeaning of an attack. Based on this central aspect,
we compiled a list of prerequisites that need to bemet in order
for a defense measure to be considered semantics-aware:

– The solution needs to counteract specific objectives or the
overall goal of the attacker by e.g. detecting or preventing
an attack or by helping to determine what the adversary
wants to achieve (see primary category G in Sect. 4 for
more information);

– The solution has to investigate, analyze, detect, or extract
the technicalmeans (i.e. techniques) of an attack or attack
action through e.g. anomalies or patterns in behavior or
code (see primary categories D and A in Sect. 4);

– The techniques, goals, or methods investigated can be
mapped to one of the seven APT phases depicted in Fig.
1 (primary category APT ).

Semantics-based approaches usually revolve around four
key topics we identified as representative for the semantic
domain in general: activity context, ontology design, data
abstraction, and correlation.Asworks in these fields are often
more universal in nature, the above restrictions do not strictly
apply. Instead, we opted to include security solutions that
facilitate the development of models, languages and formal
definitions or that determine the correctness of information
through rules of e.g. inference. We argue that they, while
perhaps not directly applicable to a particular scenario, are
sufficiently adaptable to benefit the defense against advanced
cyber-attacks.

Unlike semantics-aware approaches, the semantics-based
category closely adheres to the type definitions introduced
at the beginning of this section. For the literature review
in Sect. 5, we categorized each paper in accordance to
above definitions: Semantics-aware, semantics-based: deno-
tational, operational, or axiomatic.

3 Review method

This study is based on the guidelines for systematic literature
reviews by Barbara Kitchenham [82]. The main goal of this
paper is to systematically review available literature on the
topic of host-based, network-based, and multi-source detec-
tion of cyber-attacks with a focus on semantics-aware and
semantics-based approaches. The surveyed papers are eval-
uated by their applicability to the domain of targeted attacks.

3.1 Research questions

Specifically, there are a number of research questions
addressed by this paper:

1. Whichmodels, frameworks, formal definitions, and tools
exist to describe information system attacks?

2. Which semantics-aware and semantics-based tools and
techniques exist to detect and evaluate such attacks?

3. What are promising approaches to ATA detection and
how can they be classified?

4. What kind of information is required to identify targeted
attacks and how could it help to get a more complete
picture of an incident?

To address R1 and R2, we have conducted a search of sev-
eral scientific databases. This process is detailed in the next
subsection. To satisfy R3, we came up with a list of crite-
ria and categories to classify each identified solution. These
criteria were combined into structured overview tables that
are thoroughly explored in Sect. 6. In response to R4, Sect. 7
conceptually combines the benefits of solutions from several
review categories and sketches an ideal defense framework.

3.2 Search process

The search process included a manual keyword search on
IEEE, ACM, Scopus,Web of Science, Academic Search Pre-
mier and Google Scholar. In the first stage we focused on the
following keywords and keyword combinations: “targeted
attack {detection, identification, recognition, analysis}”;
“{APT, advanced persistent threat, threat, cyber-threat}
{detection, identification, recognition}”; “semantic{s}{-}
{based} {malware, intrusion} detection”; “SIEM” + “APT”
as well as further combinations including the “model” or
“framework” suffix.

For data providers, we disregarded all publications relea-
sed prior to 2003. General papers (e.g. original publications
on key topics) were not filtered by date. These initial searches
yielded a total of 112 papers. Every publication was perused
and summarized.

In stage 2, we assessed and selected all additional ref-
erences used in the grant proposal document of the corre-
sponding ATA research project1 at St. Pölten UAS. Stage 2
increased the number of considered papers to 114.

Lastly, we extracted a sample set of relevant references
from papers we identified as key publications. This increased
the total number of considered works to 123. Below exclu-
sion criteria and quality assessment ultimately brought this
number down to 60.

3.3 Inclusion and exclusion criteria

We included all peer-reviewed articles released between
2003 and 2015. We specifically looked for publications that
matched the following criteria:

1 Josef Ressel Center for Unified Threat Intelligence on Targeted
Attacks.
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– Frameworks, models, methods, formal descriptions and
tools of host-based, network-based, and multi-source
approaches to data collection and evaluation;

– Papers that explicitly focused on the detection, identifi-
cation, recognition, and analysis of (targeted) attacks.

Product specification sheets, magazine articles and gray
literature were excluded from our search. In addition, we
removed the following material:

– Articleswhich focused excessively onvisualization, code
manipulation, honeypot technology, and social engineer-
ing;

– Papers about data stream processing techniques;
– Marketing texts and general descriptions of commercial
malware analysis suites;

– Well-established industry solutions already discussed in
dedicated survey papers [45,154];

– Patents, as they typically lack in replicability and presen-
tation.

3.4 Quality assessment

The quality assessment of the reviewed articles is based on
a number of questions related to both overall soundness and
ATA detection suitability of the presented solutions. Each
quality assessment factor Qn was graded from 0 to +1. The
composition of the score is detailed below:

1. Were the research questions and the overall goal clearly
defined?

– Research question exists (+0.5)
– The overall objective and motivation is stated in
accordance with the goals identified in Sect. 4.1 and
Table 4 (+0.5)

2. Was the attack detection domain introduced and explai-
ned?

– An attack domain (see ’Domain’ in Sect. 4.1 and
Table 4) can be clearly assigned (+0.5)

– A practical application is exemplified (+0.5)

3. Was the approach presented in a clear and replicableman-
ner?

– Starting point and core process are described (+0.5)
– Evaluation exists (+0.5)

4. Did the article explain the nature and type of operational
data used in the process?

– Base (origin) data and its representation are stated
(+0.5)

– Result (outcome) data and its representation are
stated (+0.5)

5. Can the proposed solution be applied to the detection of
targeted attacks?

Specifically, a paper was awarded 1 point for a cate-
gory when: the research question, motivation and goals were
clearly defined (Q1), the domain was well specified (Q2),
the approach to solving the stated problem was presented in
detail (Q3), the specifics of the input and output data were
provided (Q4), and the solution is applicable to the field of
targeted attacks or one of its primary aspects (Q5). Since Q5
cannot be objectively computed by evaluating definitive indi-
cators, the score was determined in the course of an expert
discussion among at least 4 security researchers per paper.

Complementing the QA score, a domain expert rating
ranging from 0 to 5 was added following the initial assess-
ment. This score is the result of a group discussion for each
paper (minimum of 3 researchers, excluding the primary
author) andmirrors their view on the paper independent from
formal criteria. To remove any bias, this second grade was
awarded without prior knowledge of the QA score.

In addition to the exclusion criteria, we used the qual-
ity assessment to reduce the number of papers ultimately
included in the survey. Each article with an overall QA +
expert score below 4.5 as well as papers with a Q5 score of
zero were removed from the list.

3.5 Data collection

The following data was extracted from each reviewed paper:

– The type of source (journal, conference, book) and full
reference;

– Classification of general type of article (model, method,
framework, formal definition, or tool);

– Classification of information system domain (host, net-
work, multi-source, or general semantics);

– Classification of data gathering, analysis/detection, and
learning techniques used;

– Summary including tags identifying core topics and
goals;

– Quality evaluation in regards to the possible contribution
to the detection of malicious, ATA-related activities or
patterns.

Data extraction and initial checking was done by four
security researchers.
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3.6 Data analysis

The extracted data was analyzed and put into tables in order
to provide a quantitative overview:

– Total number of papers and papers per year, addressing
R1;

– Number of papers per type of article and domain, address-
ing R1 and R2;

– Tags describing the key factors of the respective solution
appended to each paper, addressing R2 and R3;

– Quality score of all papers as well as an ATA detection
applicability rating, addressing R3 as well as Q1 through
Q5;

– Full table containing used technology, specific approach,
technical properties and capabilities of the solutions
introduced in the reviewed articles, addressing R4.

All tables aswell as the statistical breakdown of the results
can be found in Sect. 6.

4 Review categories

We developed a versatile schema with 4 distinct categories
to classify the surveyed articles. Although similar in part to

Jacob et al.’s [71] behavioral malware detection taxonomy,
our schema included additional properties relevant to APT
detection and analysis, e.g. specific input types and general
goals that aren’t usually seen in malware-centric approaches.
Figure 2 presents an overview of the properties investigated.
The schema can be freely applied to all topical literature and
will help categorize solution capabilities ranging from data
collection and analysis to automated learning.

Primary categories, identified by an asterisk, are used for
synthesizing the assessed papers and represent tags assigned
to each solution. These tags include the general goal G of
the solution, the type of threat T , data input type I , detection
method D, and analysis technique A. Knowledge genera-
tion K is demarcated as either true or false and mentions
the solution’s learning and classification capabilities, where
applicable. The type of semantic affinity S (see Sect. 2.2) is
identified as well. This is complemented by the mapping of
the technique to one or more of the APT categories (includ-
ing a brief rationale) by Hutchins et al. [67] (see Sect. 2),
thereby satisfying all the semantics-side selection criteria
previously defined.

For example, a paper describing a malware detection
and behavioral analysis solution based on system events
and including a methodology to semantically describe cor-
rect sample execution might be tagged as �G{detection,
analysis}; T{malware}; I{event traces};D{pattern};A{beha-

Fig. 2 Categorization of surveyed papers
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vioral}; K{no}; S{operational}; APT{4,5,7: host activity}.
Such a solution would be best suited to detect local (host)
events that are part of APT stage 4 (exploitation), 5 (instal-
lation), or 7 (action on target).

A full breakdown of both primary and additional proper-
ties can be found in Tables 4, 5, 6, and 7.

4.1 General properties

The ‘General’ category encompasses high-level objectives
and type definitions.

– Primary domain – Each paper was assigned a single
domain that most closely matches the solution’s area
of application. Domains follow the subchapters of Sect.
5 and include host, network, multi-source, and gen-
eral/unspecified solutions.

– Contribution – This describes the type of solution
introduced in the respective paper. Frameworks, mod-
els/methods, formalisms/languages, and tools or systems
are possible types of contribution. One solution may fit
several categories.

– Goal G∗ – This criterion defines the general goal the
authors want to achieve. Typically, this can encom-
pass threat prediction, prevention, threat intelligence/
classification, threat correlation/event fusion, threat
detection, threat analysis, and threat response. The intro-
duced approaches usually have more than one goal.

– Threat type T∗ – The threat type describes the general
attack the introduced solution attempts to combat. We
have separated threat types into malicious code (mal-
ware), host intrusion, and network intrusion. A system
can counter a specific or several types of threat.

4.2 Data collection

Here, we categorize input data specifics, data gathering, and
monitoring techniques.

– Data gathering – Distinguishes between static and
dynamic data gathering. Data gathering is concerned pri-
marily with the method employed to collect the informa-
tion from a systemor application.Detection of suspicious
activity or code is part of the detection approach speci-
fied below. A combination of static and dynamic data
gathering is unlikely, but not impossible.

– Monitoring approach – There are a number of ways
to dynamically monitor execution information. Among
them is function monitoring, packet monitoring, code
monitoring, disk monitoring, memory monitoring, and
conventional logging. Specialization on one approach is
likely, but not universal.

– Data input type I*–Defines the kind of input information
processed by the respective solution. This may include
general threat information, system logs, application logs,
network traffic, traces of system events such as API and
system calls, binary code or raw data, as well as alerts
generated by distributed agents or third-party software
like an IDS. Many solutions support several input types.

– Flow functionality – Solutions with the capability to
record data flows are identified here. This often includes,
but is not limited to, network flow-based solutions.

– Environment – Depending on the system environment
the respective solution can be executed on, we catego-
rize it as running natively – or ‘on-device’ in case of
physical appliances – or as running inside a virtualized
environment such as a VM or emulator. Unspecified
or environment-neutral solutions are identified as well.
Tools can support or utilize several environments.

4.3 Analysis and detection

In this category, we take a look at how suspicious activity or
code is recognized and analyzed.

– Detection approach –Similar to data gathering, the detec-
tion of relevant information can either happen statically
or dynamically. This may in some cases differ from data
gathering when the process of collection and detection is
realized separately. For example, data may be dynami-
cally recorded and subsequently undergo static analysis.

– Detection method D* – This incorporates general detec-
tion methods such as anomaly detection, pattern/misuse
detection, similarity detection (e.g. string similarity),
graph matching, or ontology-based methodologies. Sys-
tems such as pure correlation solutions do not necessarily
utilize a particular detection method. Several methods
may be employed.

– Analysis technique A* – Including but not limited tomal-
ware, the analysis of data and, by extension, the decision
about its relevant properties, can usually happen based on
pre-defined attributes (properties, states), through behav-
ioral analysis techniques, or at a contextual (semantic)
level. In most cases, solutions use only one approach.

– Temporal domain – Depending on their implementa-
tion, detection or analysis solutions can offer real-time,
delayed but continuous, fixed-interval, or on-demand
processing initiated by user command or upon detection
of a certain event.

– Processing – Data processing itself can be performed
locally on the system the data is stored/collected, in a
centralized fashion on e.g. a dedicated server, or distrib-
uted across several nodes.
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4.4 Knowledge generation K*

A number of solutions offer mechanisms to generate knowl-
edge from the collected and analyzed data.

– Learning – (Machine) learning capabilities are identified
here. Supervised learning uses available malicious and
benign data to determine the difference to a baseline,
unsupervised learning tasks the system to determine the
deviation by itself, and deductive learning uses inference
to draw conclusions based on known premises.

– Classification and clustering – This category lists all the
identified techniques used to classify or cluster informa-
tion. We consider support vector machines (SVM), deci-
sion trees, neural networks, methods based on nearest-
neighbor or nearest-prototype determination, Bayesian
techniques and respective statistical, ‘belief’-based sys-
tems, Markov models or other ‘memoryless’ statistical
models, grammars realized through e.g. grammar pars-
ing, outlier detection, change detection such as state
comparison, and hierarchical clustering.

– Extraction – In some cases, data is merely extracted for
later analysis or visualization. Techniques found in the
reviewed papers include dependence graphs, behavior
graphs, and semantic (link) networks.

– Visualization –As a by-product of knowledge generation,
the results of earlier assessment stages can be graphically
presented. Solutions offering visualization are identified
here. See [154] for further details about security-related
visualization systems.

5 Review

In this section we assess and summarize all the papers
found through the structured search process specified above.
Solutions are categorized into host-based, network-based,
multi-source, and purely semantic approaches that cannot be
attributed to a specific domain. Figure 3 offers an overview
of the full categorization used in below subsections.

The beginning of each category section provides some
additional background relevant to the respective category.
Tags are used to identify primary categories for each paper,
providing information about the assessed solution’s general
approach to data gathering, monitoring, detection and analy-
sis, as well as knowledge generation.

5.1 Host domain

Host-based solutions can be understood as detection sys-
tems running on the endpoint. We identified memory-based
approaches, numerous behavioral detection and analysis sys-
tems, function callmonitoring solutions, host-based intrusion

Fig. 3 Paper categorization

detection systems, andmore. Formanyof the tools,malicious
software (malware) is something of a common denominator:

Most cyber-attacks involve malware smuggled onto the
system to perform its sinister deed. Malware can generally
be defined as “any software that does something that causes
harm to a user, computer, or network” [133]. Examples
include viruses, Trojan horses, backdoors, worms, rootk-
its, scareware, or spyware. Malicious software is known to
exploit vulnerabilities of the system it is designed to run on.
Flaws in applications can serve as drop vector and may be
exploited as part of a privilege escalation routine required for
administrative tasks. In the case of ATAs, this often includes
hitherto unknown exploits known as zero-days.

Commonmalware i.e. aims at financial gain through fraud
or blackmail; it is delivered to a large number of recipients in
hope that a sufficient number of people unknowingly install it
on their machines. Malware used for targeted attacks is much
more sophisticated and typically includes additional com-
ponents for e.g. long-term persistent installation and more
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complex command and control communication than can be
found in other malicious software. The main distinguishing
factor is its tailoring to a specific environment, however. APT
malware is designed to attack a particular device, operating
system, or specific application version. This influences the
choice of dropping technique, evasion routines, and attacks
against specific defensive measures employed by the victim.
While this fact makes such software dangerous to only a
limited number of systems, the damage caused by targeted
malware can be much more severe.

Malware analysis is probably the most widely used and
arguably most important class of host-based approaches.
Solutions range from analysis suites built to determine a
sample’s general maliciousness to interpretation of behav-
ior or clustering of potential malware into families. Egele
et al. [45] and [68] offer an overview of dynamic malware
analysis tools and describe various monitoring and detection
techniques. In [154], Wagner et al. expanded on some of the
tools and assessed the information they provide. There is a
multitude of information to be gleaned from various mal-
ware analysis techniques, each offering specific insight into
the nature and functionality of a malicious program. This
includes the virus definition, packer information like packer
designations and general compression information about the
sample, file and header information and code sections, library
and function imports, CPU instructions and their associated
assembly operations, system and API calls executed by the
sample, file system operations indicating the creation, mod-
ification, and deletion of files, as well as interpreted registry,
process, thread, and network operations.

A large number of the data providers surveyed below focus
on the detection or analysis of malware. We generally define
malware data providers as tools that utilize static or dynamic
analysis methods as well as signature- and behavior based
detection techniques to gather information about a potentially
malicious piece of software [154]:

Static analysis describes techniques that do not require the
sample under scrutiny to be actually executed. Depending on
the depth of analysis, a file may be checked for its basic prop-
erties like file type, checksum, easily extractable information
such as null-terminated strings orDLL import information, or
be fully disassembled [81]. The analysis environment – bare
metal, virtual machine, or emulation – plays a negligible role
for static analyses – the analyst simply chooses a platform
compatible with the tools of her choice. Dynamic analysis
goes a step further and executes the file on a dedicated host
system. Various tools then monitor the execution and log rel-
evant information into an execution trace. This ranges from
simple file systemoperations to a full instruction list captured
through a debugger. The analysis environment is essential for
the dynamic approach since the type of data logged depends
on both the platform as well as on the techniques used to
capture system events.

On the detection side we differentiate between signature-
based and behavior-based techniques:

Signature-based approaches are best known for their
prominent role in antivirus software and traditional intru-
sion detection systems. A so-called definition or signature is
created to describe an entire file or parts of the code that
are known to be malicious [154]. The detection software
then compares the appearance of a file or packet to this set
of known signatures. Signature-based detection has several
shortcomings [42]:

Firstly, obfuscation techniques commonly utilize poly-
morphic or metamorphic mutation to generate an ever-
growing number of malware variants that are different in
appearance, but functionally identical. This leads to bloated
signature databases and, ultimately, to an overall slowdown
of the detection process. Secondly, signature-based tech-
niques only detectmalwarewhich has already been identified
and analyzed; new species or hitherto unknown variants are
often overlooked.

Behavior-based techniques, on the other hand, focus on
specific system activities or software behavior typically
captured through dynamic analysis. Malicious actions are
defined through patterns or behavioral anomalies. Since
the behavior-based approach can be semantics-aware, it
is largely immune to obfuscation [42]. Its performance is
limited, however: While signature matching takes but the
fraction of a second, dynamic execution and trace analysis
can take several minutes.

The second big area of host-based threat mitigation is
intrusion detection. IT systems intrusion describes the act of
accessing a local or network-based resource without proper
authorization. It can basically be defined as computer break-
in leaving the targeted system vulnerable to theft or sabotage
[87]. In many cases the line between black-hat hacking
and malicious software becomes blurred [77]. Most typical
intrusions involve malware or tools designed to circumvent
security measures of the target system. The attack procedure
varies from case to case and can be considered ‘targeted’;
few intruders act without knowing which system they are
attacking.

On the defense side, intrusion detection is primarily con-
cerned with activities deemed illegal by the system operator
[87]. These may include digital breaking and entering but
generally encompasses all ‘malicious actions’ aimed at e.g.
privilege acquisition or resource abuse. Literature differ-
entiates two classes of intrusion detection systems (IDS):
network-based and host-based [153]. The main differences
are the type and number of sources used to detect adversary
activity; network-based IDS analyze the traffic transmitted
between systems and typically utilize a number of sensors
distributed throughout the network. Host-based systems, on
the other hand, attempt to discover attacks taking place on
the very machine the sensor component is installed on.
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There are two approaches to detecting malicious activ-
ity through an IDS: Anomaly detection and misuse (pattern)
detection [87]. Anomaly detection is based on the premise
that illegal activitymanifests as abnormality and that it can be
identified throughmeasuring the variance of certain keymet-
rics. This may include the excessive use of system functions,
high resource utilization at unusual times, or other behavior
deviating from a defined baseline.

Misuse detection, on the other hand, is based on prede-
fined patterns. Knowledge of an attacker’s methods or the
expected consequences of an attack are encoded into behav-
ior sequences that can be found by an IDS looking for
their occurrence [87]. Examples include sequences of sus-
picious function calls, certain network packet payloads, or
the exploitation of known bugs.

Many of the reviewed papers describe various host-based
approaches to locate, identify, categorize, or analyze mali-
cious software. Both semantics-aware as well as a few
semantics-based techniques are used. Most focus on deter-
mining the maliciousness of a piece of software or attempt
to classify a set of samples.

There are also various data providers that fall under the
wider definition of an intrusion detection system. Since IDSs
can be both host- and network-based, tools range from local
process or system call tracers to traffic anomaly detectors uti-
lizing various statistical methods or data mining approaches.
Network-based systems are reviewed in Sect. 5.2.

5.1.1 Malware analysis solutions

Inspired by [71], we categorized solutions into malware
analysis suites, dynamic and static detection and analysis
solutions, hardware state detection and analysis, execution
path analysis, behavior extraction systems, as well as mal-
ware classification systems.

While malware analysis suites are mostly established
commercial solutions and thereby not included as per the
criteria defined in Sect. 3, they are an important class of
data providers that need to be mentioned. Malware suites do
not per se run on the endpoint: Tools like Anubis/LastLine
Analyst [14,70], Cuckoo Sandbox [35], CWSandbox/Threat
Analyzer [142,157], Joe Sandbox [75], and FireEye MAS
[50] run in their own, usually virtualized environment. They
employ function hooking and kernel mode drivers to record
and report system and/or API calls executed by the sam-
ple under scrutiny. The recorded activity is then interpreted
and returned as human-readable summary. Malware analysis
suites are a good starting point for general dynamic analysis
and are undoubtedly the inspiration for some of the solutions
introduced below. See [45] and [154] for more information.
�Representative tags: G{detection, analysis}; T{malware};
I{event traces, network traffic}; D{pattern}; A{behavioral};
K{no}; S{aware}; APT{3-7: host and network activity}.

Dynamic malware detection and analysis is covered by
a multitude of articles: Grégio et al. [60] introduce BehE-
MOT, a non-intrusive malware behavior analysis system. It
uses both a native and emulated system environment that
promises to circumvent sandbox detection. Functions and
their arguments as well as network events are captured using
system call interception via System Service Dispatch Table
(SSDT) hooking: The SSDT is a list of memory addresses
that each correspond to a system call. If hooked, it becomes
possible to redirect calls to an altered copy of the function; a
technique useful formonitoring activity ormodifying results.
Similar to commercial suites likeAnubis [70] or Joe Sandbox
[75], BehEMOTabstracts specific calls to a general operation
type (e.g. ‘open process’). �Tags: G{detection, analysis};
T{malware}; I{event traces, network traffic}; D{pattern};
A{behavioral}; K{no}; S{aware}; APT{3-7: host and net-
work activity}.

Fukushima et al. [53] developed another behavior-based
detection approach: Suspicious process behavior is iden-
tified through specific system and temporary directories
accessed by the sample as well as the creation of cer-
tain registry keys responsible for e.g. automated startup.
Registration or deletion of uninstall information is con-
sidered as well. Fukushima’s system utilizes Procmon
[126] as primary data provider. Unlike BehEMOT’s post-
monitoring abstraction [60], Procmon abstracts system calls
in a non-transparent manner prior to analysis. For this
reason, many additional calls are not considered. This
arguably increases performance while potentially reduc-
ing accuracy. �Tags: G{detection, analysis}; T{malware,
host intrusion}; I{event traces}; D{pattern}; A{behavioral};
K{no}; S{aware}; APT{4,5,7: host activity}.

In [66], the authors introduce the TaiwanMalware Analy-
sis Net (TWMAN), an ontology system for behavioral
malware analysis. The VM-based dynamic analysis system
is built around the TRUMAN sandnet [40] that logs con-
tacted IP addresses, created, changed, and deleted files, as
well as registry activity. While some features are taken from
CWSandbox [142], others are comparable to the generally
more detailed BehEMOT approach [60]. The file output
is akin to a list of changes to the original system state.
An OWL-based ontology built in Protégé [136] describes
the impact and approximate activity of each sample and
includes a rough categorization into different types of mal-
ware. Actors, assets, and activity beyond abstracted malware
function calls are not considered in the proposed ontol-
ogy. �Tags: G{intelligence, analysis}; T{malware}; I{event
traces}; D{ontology}; A{behavioral, contextual}; K{no};
S{operational}; APT{3-7: host and partial network activity}.

The work of Chiang and Tsaur [24] introduces dedicated,
ontology-based behavioral analysis for mobile malware.
Their approach is based on the TOVE project by Fox et
al. [51] and considers infection routes, potential damage,
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and propagation capabilities via e.g. Bluetooth. While the
authors do not directly propose a practical implementa-
tion, their work can be seen as example of a domain-
specific, ontology-based approach that could be transported
to the information system environment. �Tags: G{analysis};
T{malware}; I{-}; D{ontology}; A{bahavioral, contextual};
K{no}; S{denotational}; APT{-: general approach}.

Static malware detection and analysis is less concerned
with application behavior, but primarily considers a sam-
ple’s code structure. Zhang et al. [164] introduce a detection
technique for polymorphic code through static identifica-
tion of its self-decryption functionality. Limited emulation
of instructions is used in conjunction with recursive traver-
sal of loops to find the starting location of the respective
routine. Since Zhang et al. address a very specific property
of only a subclass of malicious programs, their approach
could potentially complement systems that attempt to iden-
tify other function entry points [44] or illegitimate code
paths [20].�Tags:G{detection}; T{malware, host intrusion};
I{network traffic, raw}; D{pattern}; A{behavioral}; K{no};
S{aware}; APT{3,5: partial network and initial program
activity}.

Dube et al. [44] take a more general approach. Their sys-
tem,MaTR, focuses on target recognition of malware attacks
through static heuristic features. These non-instruction-based
heuristics include structural anomalies such as non-standard
section names, characteristics such as the presence of
unpacking routines, entry points outside the code section, and
unusual numbers of function imports and exports. MaTR uti-
lizes supervised machine learning based on bagged decision
trees. Dube’s research contrasts the n-gram approach found
in other surveyed articles [16,23,124], where sequences
of byte patterns of various lengths are assessed. �Tags:
G{detection, analysis}; T{malware}; I{raw}; D{anomaly};
A{behavioral}; K{yes: supervised learning, decision tree
classification}; S{aware}; APT{5: structural program prop-
erties}.

One of themost citedworks is undoubtedly byChristodor-
escu et al. [28]. The authors describe a malware detec-
tion algorithm that incorporates instruction semantics, an
approach that uses resilient pattern matching which can deal
with slight variations in code. Activities such as decryp-
tion loops and search operations for certain strings are
considered malicious behavior indicators, which are spec-
ified by templates and depicted as control-flow graphs
(CFG). Christodorescu et al. also developed a tool based
on IDA Pro [64]: It takes a binary, disassembles it, con-
structs a CFG, produces an intermediate form using abstract
machine language, and determines a possible match. In a
later paper, Preda et al. [36] prove that the concept of
semantic malware detectors such as [28] is a sound one and
can indeed defeat numerous obfuscation techniques. �Tags:
G{detection, analysis}; T{malware}; I{raw}; D{pattern};

A{behavioral, contextual}; K{no}; S{aware}; APT{4,5,7:
program activity}.

Sharif et al. [132] introduce Eureka, a framework for
facilitating static analysis of obfuscated code. The sample
is first executed to trigger its unpacking procedures, then
captured and dumped for static analysis. Here, API reso-
lution comes into play: Eureka identifies subroutines and
builds a control flow graph for every function. Calls are then
extracted from the image of the previously packed sample.
The combination of static and dynamic analysis addresses
the issue that packed or encrypted samples are hard to ana-
lyze in their original state. Letting the respective routines
execute before taking a closer look on the disassembled code
promises an unimpeded view on the malware in question –
with any of the above-mentioned static analysis tools. �Tags:
G{analysis}; T{malware}; I{event traces, raw}; D{pattern,
ontology}; A{attribute, behavioral}; K{yes: behavior graph
extraction, visualization}; S{aware}; APT{5: initial program
activity}.

Hardware state detection and analysis solutions encom-
pass raw operation monitoring applications that are often
VM-centric. Fore example, the approach described in [74]
focuses specifically on virtual machines. VMwatcher con-
structs an on-system semantic view on files, processes, and
kernel modules to bridge the gap between the inside and
outside view on a system. Jiang et al. use virtual machine
introspection (VMI) to monitor the raw disk and memory
states of a VM in a transparent and tamper-resistant fash-
ion. This ultimately eliminates the need to install malware
detection software on the guest machine and could enable
further research into system state analysis in virtual envi-
ronments. �Tags: G{detection}; T{malware}; I{event traces,
raw}; D{-}; A{attribute}; K{no}; S{aware}; APT{4,5,7: raw
host activity}.

Payne et al. [114] also focus on VMI-based monitor-
ing. Their proposed solution, Lares, is primarily intended to
protect other defense measures such as antivirus programs
and intrusion detection systems by providing an isolated
API monitoring environment. Lares could be combined with
other tools that would benefit from the additional protec-
tion against evasion or tampering. �Tags: G{detection};
T{malware, host intrusion}; I{event traces, raw}; D{-}; A{-
}; K{no}; S{aware}; APT{4,5: raw host activity, secondary
protection}.

Mankin and Kaeli [97] propose a similar disk monitoring
system: Their implementation, the Disk I/O analysis engine
(DIONE), intercepts and interprets disk access operations
using a sensor that resides in the Xen hypervisor outside the
guest OS. Thanks to this design, DIONE is more resilient
against many conventional attacks and various obfuscation
techniques. Attacks against the hypervisor itself [115] and
cross-VM attacks [9,125] remain an issue, however. Unlike
Jiang’s VMwatcher [74], DIONE is capable of monitor-
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ing the NTFS filesystem. �Tags: G{detection}; T{malware};
I{raw}; D{-}; A{-}; K{no}; S{aware}; APT{4,5: raw disk
operations, secondary protection}.

Execution path analysis explores or defines code paths that
are dynamically investigated during execution. Miles et al.
[102] focus on the interrelationship amongmalware instances
to discover new connections between actors, machines, and
malware: Code, semantically similar procedures of code, and
API call execution/event log traces are compared to identify
similarities. This includes websites, e-mail messages and PE
file headers. Names, addresses, and certain constants are gen-
eralized usingBinJuice [89]. The discovery system itself uses
concolic execution: It is able to explore multiple execution
paths by using an SMT solver to create new input values for
subsequent runs. Miles’ prototype system, VirusBattle, fur-
ther includes an unpacking routine as well as monitoring
capabilities utilizing VMI. With a focus on threat intelli-
gence and attribution, Miles’ approach could be combined
with other, more detection-centric methods to enhance its
capabilities. �Tags: G{intelligence, analysis}; T{malware};
I{event traces, raw}; D{similarity}; A{attribute, contextual};
K{no}; S{operational}; APT{3-7: host and partial network
activity, web, e-mail}.

Another interesting approach is presented by Xu et al.
[159]. They introduce a waypoint mechanism in the form of
markers on the execution path that a process must follow to
provide trustworthy control flow information for subsequent
anomaly monitoring. Waypoints, for which Xu et al. use the
context of the currently active function of the code, are gener-
ated through static analysis and later imported as traps into the
kernel. A systemutilizing thismethodwould be able to detect
mimicry attacks [153], i.e. the interleaving of malicious
calls in benign sequences. �Tags: G{detection}; T{malware,
host intrusion}; I{raw}; D{anomaly}; A{contextual}; K{no};
S{operational}; APT{4,5: program flow}.

PECAN [20] is a dynamic anomaly detector that identifies
unusual program behavior through the definition of legiti-
mate code paths. It has been developed to identify bugs that
use valid executions but violate the programmer’s expecta-
tions. The authors introduce both a training and monitoring
module: The system scans for specific security functions that
can affect the system outside the Java VM, considers the call-
ing context of a call, and checks for anomalous sequences.
This is achieved through probabilistic calling context (PCC),
which appends a unique number that represents the location
a program is called from [19]. Clients then query that num-
ber at every system call to determine whether the context is
known or suspicious. While PECAN is a solution specific
to Java, the concept of context can also be found in sys-
tem calls [86]. Synergies to process-graph-based systems are
likely, but have yet to be investigated. �Tags: G{detection};
T{malware}; I{raw}; D{anomaly}; A{bahavioral, contex-

tual}; K{supervised learning}; S{operational}; APT{4,5:
program flow}.

Behavior extraction solutions often focus on graphs and
subgraphs of certain behavioral commonalities.Often similar
to classification approaches (see below), they usually focus
on the generation of knowledge.

Kwon and Lee [88] introduce BinGraph, a discovery
method for metamorphic malware. API calls are extracted
and converted to a hierarchical behavior graph. Extracted
subgraphs represent common behavior and can be consid-
ered a ‘semantic signature’ – Kwon and Lee assume that the
same API sequences occur in metamorphic variants of the
same malware strain. To counter isomorphism, node types
are abstracted into categories such as process, registry, mem-
ory, or socket operations. Each operation can be further split
into groups that denote the specific action (open, close, read,
write) performed. Graphs are matched to search for sub-
graphs in newly submitted traces. �Tags: G{detection, analy-
sis}; T{malware}; I{event traces}; D{graph}; A{attribute};
K{yes: behavior graph extraction}; S{aware}; APT{4-7: host
activity, sockets}.

In [155], theWang et al. describe amalware feature extrac-
tion system based on application behavior. System calls and
their dependencies are mapped to a graph and then tainted to
trace the passing on of parameters. Calls of interest include
file, registry, process, and network functions. Single-step
debugging is used to keep track of the tainted information.
Semantic analysis is used on certain, not further specified
calls. The taint approach sets this work apart from other
solutions and allows the authors to extract calls that are
actively used by malware. �Tags: G{intelligence, analysis};
T{malware}; I{event traces}; D{graph}; A{behavioral, con-
textual}; K{yes: dependence graph extraction}; S{aware};
APT{4-7: host and partial network activity}.

Another graph-based approach, DAVAST, is described by
Wüchner et al. [156]: The authors visualize trace informa-
tion as quantitative data flow graphs where files, sockets,
processes, andmore are represented as nodes while the edges
depict the execution flow. Both online and offline analy-
sis is supported. Rules define normal behavior as well as
malicious activities. Abstraction of e.g. memory addresses
is used to reduce processing complexity. Unlike most other
solutions, Wüchner et al. use time slices to further reduce
the size of their graphs. Since DAVAST primarily focuses on
visualization, further automated processing it is not explored.
It is currently unknown if Wüchner’s approach [156] could
be used in combination with e.g. Wang’s feature extraction
system [155] or other graph-based approaches such as Bin-
Graph [88] or the system introduced by Dolgikh [41]. �Tags:
G{detection, analysis}; T{malware, host intrusion}; I{event
traces}; D{pattern}; A{behavioral}; K{yes: visualization};
S{aware}; APT{3-7: host activity, sockets, e-mails}.
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Dolgikh et al. [41] conduct behavioral analysis capable to
automatically create application profiles for both malicious
and benign samples. Their system considers recorded API
calls that are subsequently transformed into a labeled graph
representing a stream of system calls. Graphs are compressed
using the Graphitour algorithm [116] used in genetic data
processing. When applied to benign software, the resulting
dataset describes rules that represent normalcy – function-
ality of system calls that can be seen as benign behavior.
Ultimately, each node in the rule graph is modeled as part
of a Colored Petri Net [73]. �Tags: G{intelligence, detec-
tion}; T{malware}; I{event traces}; D{anomaly, graph};
A{behavioral}; K{yes: supervised learning, classification
grammar, behavior graph extraction}; S{aware}; APT{4,5,7:
host activity}.

Graph mining is another interesting approach to extract-
ing behavior. Next to developing a language for specify-
ing malicious behavior through system call dependencies,
Christodorescu et al. [27] came up with a method to
mine behavioral data from trace files of benign and mali-
cious samples. Both are collected during dynamic analysis
and linked through their parameters. Christodorescu’s sys-
tem, dubbed ‘MiniMal’, constructs dependence graphs for
later comparison. To keep the classification process non-
specific to individual samples, the graphs are generalized
into so-called minimal contrast subgraphs describing the
smallest possible malicious subgraph that does not occur
in benign sequences. Other works build on Christodor-
escu et al.’s concept: Fredrikson et al. [52] introduce a
graph mining method for extracting significant behavioral
specifications used to describe classes of programs. Their
system, Holmes, aims to extract specifications that dis-
tinguish malicious from benign applications on a system
call level. �Tags: G{intelligence, detection}; T{malware};
I{event traces}; D{graph}; A{behavioral}; K{yes: deduc-
tive learning, dependence graph extraction, visualization};
S{aware, denotational}; APT{4,5,7: host activity}.

Touching the network domain, Jacobs et al. [72] present
Jackstraws, a system designed to identify command and
control (C2) communication. Unlike other network-centric
approaches, Jackstraws captures host activity through dyna-
mic analysis performed by tools such as Anubis [70] and
associates network communication to local malware activity.
Association is achieved through behavior graph modeling of
data flows between individual system calls. Graph templates
for C2 pattern similarity matching are mined from a known
set based on a technique introduced by Yan and Han [162],
followed by a clustering stage. While Jackstraws is poten-
tially vulnerable to certain obfuscation and mimicry attacks
[153], its unique approach to detecting C2 traffic makes it
particular interesting toAPT detection and knowledge gener-
ation efforts.�Tags:G{intelligence, detection}; T{malware};
I{event traces}; D{pattern. similarity, graph}; A{behavioral,

contextual}; K{yes: supervised learning, graph clustering,
behavior graph extraction}; S{aware}; APT{6: C2 network
activity}.

Malware classification solutions found in literature usu-
ally cluster dynamic analysis traces or static function use.
The primary purpose of malware classification is the gen-
eration of knowledge through sample similarity assessment.
Unlike behavior extraction (see above), classification does
not necessarily yield discriminative patterns for subsequent
use.

Riek et al. [124,145] describe a clustering and classifi-
cation approach for malware behavior traces generated by
dedicated dynamic analysis tools (in their case the malware
sandbox ‘CWSandbox’ [142]). The focus lies on API and
system calls as well as their arguments. The reports are
embedded in a vector space in order to enable similarity
assessment based on geometry. Hierarchical clustering is
then used to identify groups of malware displaying sim-
ilar behavior. The distance to a representative prototype
is determined and stored. Incremental analysis allows for
comparing new samples to existing clusters. For better
granularity, the authors introduced the optional Malware
Instruction Set (MIST) format: The behavior of a binary
is described as a sequence of instructions similar to CPU
opcodes. Each level of MIST allows for additional details
to be included or omitted on demand. Riek et al.’s work
later became ‘Malheur’ [123], a system capable of rapidly
processing function call n-grams. Malheur’s performance
and flexibility makes it a useful tool for pre-classifying
samples without having to convert existing traces. How-
ever, since Riek’s approach does not extract patterns like
e.g. Christodorescu’s work [27], Malheur’s performance and
accuracy comes at the expense of semantic expressiveness.
�Tags: G{intelligence}; T{malware}; I{event traces}; D{-
}; A{behavioral}; K{yes: unsupervised learning, nearest
prototype clustering}; S{aware}; APT{4-7: support solu-
tion}.

In [13], Bayer et al. present a scalable behavior-based
malware clustering system. Dynamic analysis is performed
using Anubis [70] and extended with taint tracking func-
tionality that marks out-arguments and return values and
monitors them for changes. The resulting trace files are
then generalized into profiles which characterize sample
behavior. Ultimately, the abstracted data is clustered using
the locality sensitive hashing (LSH) algorithm based on
the work of Indyk and Motwani [69]. Despite the fact
that Riek’s approach is more accurate in terms of F-
measure [124], the extraction of profiles is a distinct advan-
tage over pure classification systems like Malheur. �Tags:
G{intelligence}; T{malware}; I{event traces}; D{pattern,
similarity}; A{behavioral}; K{yes: nearest prototype clas-
sification}; S{aware}; APT{4-7: host and limited network
activity}.
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5.1.2 Host-based intrusion detection systems

Host-based intrusion detection systems focus less on the
tool/malware utilized by the attacker but rather on anomalous
activities registered on the system. For example, Mutz et al.
[86] describe a classical approach to detecting anomalies in
system call sequences. Their system is designed to detect
attacks against privileged applications. To this end, it ana-
lyzes the relation between system call arguments and calling
contexts. Function return addresses gathered from the appli-
cation call stack are used to add cohesion. Among the anom-
alies considered are string length, character distribution, and
the use of certain non-printable characters. As part of Mutz’
prototype implementation, a Linux kernel module monitors
system calls through a wrapper function that logs relevant
activity before actual execution.�Tags:G{detection}; T{host
intrusion}; I{event traces, raw}; D{anomaly}; A{behavioral,
contextual};K{yes: supervised learning,Markov-based clas-
sification}; S{aware}; APT{4,5,7: host activity}.

Anomalies in system call patterns are a predominant
theme: Creech and Hu [34] introduce a host-based anomaly
detection method that uses discontiguous (unconnected) sys-
tem call patterns. A context-free grammar describes benign
and malicious call traces; learning is achieved through an
Extreme Learning Machine (ELM), a new type of fast-
learning artificial neural network. Several decision engines
were tested and compared by the authors, making the paper
a good starting point for the selection of learning algorithms
applicable to system call sequences. �Tags: G{intelligence,
detection}; T{host intrusion}; I{event traces}; D{anomaly};
A{contextual}; K{yes: supervised learning, neural network/
Markov-/grammar-based classification}; S{aware w/ deno-
tational elements}; APT{4,5,7: host activity}.

A way to formally describe a data flow without losing
information about the accessing resource is described in
Chaturvedi’s work [23]. Their model can capture certain
properties of the sample and identifies anomalies hinting
at malicious use of functions or configuration files. Among
the considered properties are command line arguments
and environment specifics such as local variables. �Tags:
G{detection}; T{malware, host intrusion}; I{event traces};
D{anomaly}; A{behavioral}; K{yes: supervised learning,
behavior graph extraction}; S{aware}; APT{4,5,7: host
activity}.

Based on this approach, Bhatkar et al. [16] propose anom-
aly detection within the data flow of an application: In
addition to calls, call arguments are considered and used to
establish a temporal context. Unary relations define the prop-
erties of an argument in the form of a specific value or range,
while binary relations establish the relationship between two
event arguments. This model allows to search for e.g. certain
paths or file extensions and is able to compare them to each
other. With its focus on learning as well as matching con-

trol flows, both Bhatkar’s [16] and Chaturvedi’s [23] systems
exemplify and discuss the use of n-gram and execution graph
methods. �Tags: G{detection}; T{malware, host intrusion};
I{event traces}; D{pattern, ontology}; A{contextual}; K{yes:
supervised learning, Markov-based extraction}; S{aware,
denotational}; APT{4,5,7: host activity}.

Ou et al. [113] emphasize the issue that attacker and
user actions are often syntactically similar and are therefore
hard to distinguish from one another. They propose the for-
mal modeling of uncertainties to counter false-positives and
use various system monitoring data sources to score them.
The introduced reasoning engine is designed to determine
whether a system is actually compromised. Statements writ-
ten in the logic programming language Prolog [31] describe
the rules and aim to emulate the reasoning process of a human
administrator. �Tags: G{prediction, detection}; T{host intru-
sion}; I{system/app logs, network traffic, event traces}; D{-};
A{-}; K{no}; S{denotational}; APT{3-7: general approach}.

Kumar and Spafford [87] take a step back and present
a pattern matching model for misuse intrusion detection,
which is not based on the premise that intrusive activity
always manifests as an abnormality. Instead, misuse detec-
tion uses knowledge about attacks such as known exploits
as well as patterns and monitors the system for the occur-
rence of these patterns. The approach proposed in their paper
defines the patterns as state transition graphs that are an adap-
tation of Colored Petri Nets [73]. Start and final states as well
as the paths in between are matched by the net. Like most
pattern-based approaches, Kumar’s system only looks for
known behavior. �Tags: G{detection}; T{host intrusion}; I{-
}; D{pattern}; A{behavioral}; K{no}; S{aware}; APT{4,5,7:
general approach}.

Andersson et al. [6] focus on code injection that can be
mapped to DLL injection attacks. Their framework uses
process tracing and DLL hooking based on the Microsoft
Detours library: Potentially executable instructions are iden-
tified through Snort [30] and Fnord [22] and are sent to a
monitored environment where they are dynamically scanned
for shellcode. Two methods were employed by the authors:
NOP detection similar to [28], and executable code iden-
tification. Andersson’s framework is an example for how
suspicious traffic data can be automatically forwarded by
an IDS to a dynamic host-based analysis tool. �Tags:
G{detection, analysis}; T{host intrusion}; I{network traffic,
event traces}; D{pattern}; A{behavioral}; K{no}; S{aware};
APT{4-7: partial host and network activity}.

5.2 Network domain

Network-based approaches primarily include generic
network-based intrusion detection systems (NIDS), specific
attack detection systems, traffic flow analysis solutions as
well as detection systems for malicious web traffic.
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Although usually classified as NIDS (see above), net-
work traffic analysis systems deserve special attention. They
come in two distinct flavors [135]:Packet inspectors that ana-
lyze the payload of certain (or all) packets, and flow-based
detection systems. The latter focus on communication pat-
terns instead of individual packets. Such patterns typically
include source and destination IP addresses, port numbers,
timestamps and transmission duration, as well as the amount
of data and number of packets sent. Flowmonitoring systems
like compatible IOS routers usually export Netflow [29] or
IPFIX [144] records and transmit them to a central node for
analysis.

Detailed packet inspection requires significant process-
ing capacities and may cause slowdowns on even the most
powerful networks. For this reason, many solutions focus
primarily on header information and analyze only specific
packets such as HTTP requests and responses relevant for
malicious web traffic detection. Flow-based systems are gen-
erally faster but ignore packet payloads. In addition, they
are reliant on external analysis systems that amalgamate and
interpret the collected data.

Both approaches may utilize pattern- and anomaly-based
detection (see HIDS above). For example, a large number of
SSH connections to a specific destination IP address could
match the pattern of a brute-force attack. Significant amounts
of data sent during the out-of-hours period, on the other hand,
could constitute a data leakage anomaly.

A growing number of data providers use flow-based detec-
tion to complement classical packet inspection. It is often
used to identify Denial of Service (DoS) attacks and other
suspicious communication patterns. Packet scanning, on the
other hand, aims at finding potentially malicious payload
data. This makes it the direct equivalent to signature-based
malware detection.

Many network-based systems use publicly available data-
sets to test the capabilities of an NIDS. Examples include the
2000DARPA set [104] andKDD1999 [146]. On the payload
side, ADMmutate and the Clet engine [76] are often used to
generate (polymorphic) shellcode.

5.2.1 Network-based intrusion detection systems

General NIDS are represented in a large number of papers.
Several of those include a semantic component. For exam-
ple, Abdoli and Kahani [1] describe a distributed IDS that
can extract semantic relations between attacks using an
ontology based on the Semantic Web [150], a collection
of W3C formats for data exchange. Like similar solutions
[24,66], they utilize Protégé [136] for ontology design and
SPARQL [152] for querying. Their system uses Java-based
JENA [8] agents to collect IPs, ports, protocols, and connec-
tion status information. A dedicated master node interprets

the data and attempts to find indicators for embedded mal-
ware, buffer overflows, password attacks, or ongoing DoS
activity. �Tags: G{detection}; T{malware, host intrusion,
network intrusion}; I{network traffic};D{pattern, ontology};
A{attribute, contextual}; K{no}; S{aware}; APT{1,3-7: net-
work activity with payload detection}.

Many papers are based on or inspired by Christodor-
escu et al.’s work ([28], see ‘Static malware detection
and analysis): In [129], the authors describe two sliding-
window-based schemes used to automatically generate mal-
ware signatures: a fixed-size scheme and a more flexi-
ble variable length scheme which stops at certain, pre-
defined patterns. In combination, they augment Christodor-
escu’s approach with a traffic classifier and a binary detec-
tion and extraction module capturing polymorphic shell-
code. Like a part of Andersson’s less successful host-
based approach [6], their work focuses on the presence of
‘no operation’ (NOP) and NOP-like instructions. �Tags:
G{correlation, detection}; T{malware, host intrusion, net-
work intrusion}; I{network traffic}; D{pattern}; A{attribute,
contextual}; K{no}; S{aware}; APT{3,4,6: network activity
with payload detection}.

Hirono et al. [65] present another, more architecture-
centered approach. They propose a distributed IDS that
uses a transparent proxy able to analyze internal network
traffic in an isolated environment. The system primarily
uses signature-based detection to identify malware propa-
gation, spamming, or DoS attacks. Suspicious binaries are
automatically extracted and forwarded to a dynamic mal-
ware analysis sandbox. The decision whether a sample is
suspicious is made by Snort [30] complemented by an
off-the-shelf virus scanner. Similarly, Andersson [6] uses
the Snort IDS for initial decision-making. Unlike Ander-
sson and Scheirer [129], Hirono et al. do not attemt to
identify shellcode but rather focus on the extraction and
analysis process of the flagged binaries. �Tags: G{detection,
analysis}; T{malware, host intrusion, network intrusion};
I{network traffic, event traces}; D{pattern}; A{attribute};
K{no}; S{aware}; APT{3,7: network activity with normal
malware scan}.

Correlation of intrusion events is a vital part ofmostmulti-
agent IDS systems. Chien et al. [26] introduce a primitive-
attack (PA)-based correlation framework able to detect
multi-stage attacks. IDS alerts from various tools such as
Snort [30] are extracted, stored and evaluated. Through time
window correlation complemented by port and IP match-
ing, the system is able to identify e.g. network scans and
denial of service attacks. The authors construct attack tem-
plates, mapping abstracted goals to specific attacker actions
such as reconnaissance, penetration, and other unautho-
rized activity. �Tags: G{correlation, detection}; T{network
intrusion}; I{alerts}; D{ontology}; A{contextual}; K{no};
S{axiomatic}; APT{1,3,6,7: partial network activity}.
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Zhu and Ghorbani [165] present an alert correlation tech-
nique that also considers attacker strategies. Their classifica-
tion encompasses a neural network aswell as a support-vector
machine (SVM) [33] approach. Their system suggests rela-
tionship of alerts: For example, consequences of one event
are mapped to the prerequisites of another in order to
construct scenarios that consider both correlation strength
and probability. In addition to IP similarities and match-
ing ports, the frequency of alerts is assessed. In the end,
an attack graph is generated from the extracted attacker
strategies. �Tags: G{prediction, intelligence, correlation,
detection}; T{network intrusion}; I{alerts}; D{similarity,
ontology}; A{contextual}; K{yes: supervised learning, SVM
and neural network classification, behavior graph extrac-
tion}; S{aware}; APT{1,3,6: network activity}.

A more recent paper by AlEroud and Karabatis [2] (also
see [62]) presents a layered attack detection system that
utilizes semantics and context through a semantic network
describing relationships between attacks. Their approach
uses Conditional Entropy Theory – the uncertainty of one
event given another [131] – to create attack context pro-
files that filter out non-relevant events. In addition, the
Anderberg similarity coefficient measure [43] is used to
detect similarities in binary network data. For example,
the ‘host context’ profile considers type, vulnerabilities,
operating system, applications, and services when filtering.
�Tags: G{prediction, correlation, detection}; T{host intru-
sion, network intrusion}; I{network traffic}; D{ontology};
A{contextual}; K{yes: supervised learning, Bayesian classi-
fication, semantic network extraction}; S{aware}; APT{1,3-
7: general approach}.

5.2.2 Traffic flow analysis solutions

Flow-based approaches are increasingly used to detect net-
work attacks. Sperotto et al. [135] offer a good overview of
traffic flow IDS systems. Over the years, a number of differ-
ent solutions have been proposed:

Münz and Carle [110] present TOPAS, a traffic flow
and packet analysis system compatible with Cisco NetFlow
and IPFIX. TOPAS provides a framework for user-defined
detection modules operating in real-time. The data used
is netflow-specific in nature: Source and destination IP
addresses/ports as well as protocols are considered. The
system’s detection algorithm encompasses threshold-based
detection via pre-defined values that need to be exceeded,
principal component classifiers (PCC) to detect anomalies in
multivariate time series, outlier detection through the com-
parison of a sample to previously learned, normal behavior,
and rule learning through a classification extracted from these
“good” and “evil” training sets. �Tags: G{detection, analy-
sis}; T{network intrusion}; I{network traffic}; D{anomaly,

pattern}; A{contextual}; K{yes: supervised learning, outlier
classification}; S{aware}; APT{1,6: network flows}.

Vance’swork [148] is one of the few approaches that focus
directly on APTs: He describes a flow-based monitoring sys-
tem that uses statistical analysis of captured network traffic
data to detect anomalies. He uses change detection through
sketch-based measurement [85] to identify flows that hint
at command & control traffic, data mining, or exfiltration
activities. Volume, timing, and packet size are of primary
interest; the respective baseline and subsequent analysis con-
sider packet and traffic throughput, number of concurrent
flows, TCP/IP SYN and RST packets, flow duration, and the
current time. �Tags: G{intelligence, detection}; T{network
intrusion}; I{network traffic}; D{anomaly}; A{contextual};
K{yes: change classification}; S{aware}; APT{6: specific
network flows}.

Another example of flow-based intrusion detection is
described in [3]: The authors’ approach utilizes probabilis-
tic semantic link networks (SLN) synonymous to graphs
using similarity values to describe node connections. The
target’s IP address, time and duration of communica-
tion, as well as various other features such as protocols
and flags are mined from network traffic and the corre-
sponding flows. Common characteristics are translated into
link weight between the respective nodes of the graph.
�Tags: G{prediction, intelligence, correlation, detection};
T{host and network intrusion}; I{system logs, app logs, net-
work traffic, alerts}; D{similarity}; A{contextual}; K{yes:
decision tree classification, semantic network extraction};
S{axiomatic}; APT{1,3,6: general approach}.

5.2.3 Web traffic detection and analysis systems

Web service attacks are often part of the reconnaissance
stages of a targeted attack or aim to publicly disclose sen-
sitive information. More often than not, business-critical
infrastructure can be accessed through exposed web portals
that allow privileged users to monitor or configure backend
systems. Because of their high visibility, web servers are also
frequent targets of defacement attacks. For these reasons, a
number of security solutions focus on the detection of mali-
cious HTTP traffic:

Razzaq et al. [121] describe a system able to detect
and classify web application attacks. Threats are specified
through semantic rules that establish the context: Both attack
consequences and common application properties such as
protocol use are evaluated. The system analyzes the user part
of an HTTP request (header, message) to detect authentica-
tion bypass attacks, DoS, probing, cookie stealing attacks,
and more. The authors developed an ontological model (see
also [120]) using a description logic based onOWL [100] and
validated through OntoClean [61]. The inference rules were
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implemented using the Apache JENA framework [8]. �Tags:
G{intelligence, correlation, detection, analysis}; T{network
intrusion}; I{network traffic}; D{ontology}; A{contextual};
K{yes: deductive learning}; S{axiomatic}; APT{1,3,6,7: spe-
cific network traffic}.

Earlier work of Razzaq et al. [119] describes another
interesting semantic approach. The authors introduce an
application-level IDS using a Bayesian filter to find mali-
cious scripts in HTTP protocol traffic. URL, parameters,
cookies, etc. are considered. This ‘spam filter’ assigns
values to specific keywords and generates a score. Poten-
tial attacks are matched with attack descriptions stored
in an external database. �Tags: G{detection}; T{network
intrusion}; I{network traffic}; D{ontology}; A{contextual};
K{yes: deductive learning, Bayesian classification};
S{aware}; APT{3,6: specific network traffic}.

Another semantic intrusion detection system is presented
by Sangeetha and Vaidehi [128]. It defines malicious behav-
ior as rules that consider source, frequency of occurrence,
and parts of the HTTP packet content. Rules are repre-
sented as BNF grammar [48]. Fuzzy Cognitive Mapping
[84] is used for attack prediction. The authors’ traffic sniffer
and interpreter system was implemented as part of a client-
server infrastructure. �Tags: G{prediction, detection, analy-
sis}; T{network intrusion}; I{network traffic}; D{pattern,
similarity}; A{contextual}; K{no}; S{aware, denotational};
APT{3,6: specific network traffic}.

SpuNge [12] is a system explicitly designed to detect
targeted attacks through behavior clustering (similar behav-
ior with respect to malicious resources used) and loca-
tion/industry correlation. The analysis focus lies on URLs
– its framework is able to detect machines that are part
of the same attack. This is achieved through hierarchical
clustering and string similarity measurement utilizing the
Levenshtein distance [92]. SpuNge determines host dis-
tance (hostname similarity) and request distance (request
path similarity) and groups the processed requests accord-
ingly. �Tags: G{intelligence, correlation, detection}; T{host
and network intrusion}; I{network traffic}; D{similarity};
A{contextual}; K{yes: hierarchical clustering}; S{aware};
APT{1,3,6: specific network traffic}.

Thakar et al. [140] also focus on the analysis and extrac-
tion of traffic patterns. Unlike SpuNge, their work revolves
around the extraction of signatures that can later be used
by an IDS. Specifically, the authors log SOAP [151] traf-
fic and extract information such as client identifiers, IP
addresses, ports, and certain strings in HTTP requests and
response packets. The data is then clustered using an SVM-
based classifier [33]. Extraction and analysis utilizes the
Longest Common Substring (LCS) algorithm [10]. �Tags:
G{intelligence, analysis}; T{network intrusion}; I{network
traffic}; D{pattern}; A{attribute}; K{yes: SVM-based classi-
fication}; S{aware}; APT{1,3,6: specific network traffic}.

Zarras et al. [163] introduce BotHound, a detection
method for malware communicating over HTTP. The sys-
temautomatically generatesmodels for benign andmalicious
requests and classifies new traffic in real-time. The primary
goal is to discover bot traffic and C2 communication through
suspicious header chains (sequences of HTTP headers) and
HTTP templates that encompass content data such as IP
addresses, ports, transported file types, and more. Like in
[12], string similarity is measured using the Levenshtein
distance [92]. �Tags: G{detection}; T{malware}; I{network
traffic}; D{pattern, similarity}; A{attribute, behavioral};
K{yes: supervised learning}; S{aware}; APT{6,7: specific
network traffic}.

5.2.4 Attack-specific approaches

There are a number of network attack detection systems
that focus on a specific type of threat. Because of their
prominence, (distributed) Denial of Service (D/DoS) attacks
are of special interest. One such solution is introduced by
Gamer et al. [55]. Their proposed attack detection sys-
tem is placed on routers and focuses on DDoS attacks
and malware propagation. Network traffic is sampled and
then refined in several stages: At the first level of granu-
larity, Gamer’s approach only considers the overall number
of packets and attempts to find anomalous changes in vol-
ume. Level two differentiates DDoS from worm propagation
by analyzing target subnets. Protocol anomalies hinting
at a specific attack are detected in stage three. This e.g.
includes the anomalous ratio between incoming and out-
going packets that typically accompanies a DDoS attack.
�Tags: G{detection}; T{network intrusion}; I{network traf-
fic}; D{anomaly}; A{behavioral}; K{no}; S{aware};
APT{3,7: specific network traffic}.

‘Vanguard’ [95] is a detection system addressing low-rate
and random-intervalDoS attacks. Luo at al.’s approach is for-
mal in nature: They propose a detection scheme for polymor-
phic DoS attacks that registers anomalies in TCP traffic. The
decision is primarily based the ratio between incoming data
and outgoing ACK packets. Vanguard has been implemented
as Snort [30] preprocessor plug-in, presenting amore specific
and better tested approach than Gamer’s model [55]. How-
ever, its narrow focus on low-rate DoS attacks limits its use;
the applicability of the algorithm toother types ofDoSattacks
has not yet been explored. �Tags: G{detection}; T{network
intrusion}; I{network traffic}; D{anomaly}; A{behavioral};
K{no}; S{aware}; APT{3,7: specific network traffic}.

On the ontology side, the system by Ansarinia et al.
[7] provides an interesting take on the detection of DDoS
attacks. The authors model prerequisites and consequences
(e.g. unwanted disclosure) of such attacks and automati-
cally generate an attack ontology based on Mitre’s CAPEC
[105], CWE [108], andCVE [107] threat information. Events
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and IDS logs are combined and converted to a single for-
mat: CEE [106]. In the end, it is possible to ontologically
describe how a vulnerability is comprised of certain weak-
nesses and how exploiting them leads to a successful attack.
�Tags: G{detection}; T{network intrusion}; I{threat info,
alerts}; D{pattern, ontology}; A{contextual}; K{yes: deduc-
tive learning}; S{denotational, axiomatic}; APT{1,3,6: gen-
eral approach}.

5.3 Multi-source domain

Multi-source approaches typically focus on data fusion and
event correlation. The primary categories within this domain
are SIEM-like solutions and log correlation systems:

Logs are record files created by a wide range of devices
and applications. Their primary purpose is non-repudiation
through event auditing as well as system diagnostics. Log
analysis systems retrieve log files and assess their contents.
This can again be done using pattern or anomaly detection
(see IDS) and will typically yield simplified alerts or a list
of anomalous log entries. Their simple yet versatile nature
makes bulk-processing easy and feasible for a wide range of
applications.

Log analysis is often used in conjunction with multi-
source event fusion. Solutions such as Security Information
and Event Management (SIEM) systems take log files of e.g.
several intrusion detection systems, traffic flow analyzers,
andOS event logs to correlate or visualize attacks. SIEM sys-
tems usually do not monitor assets on their own; they merely
process logs, alerts, and other monitoring reports generated
and supplied by other tools. Multi-source (log) analysis is
the closest thing to an attack interpretation system currently
on the market.

SIEM systems and SIEM-like event fusion tools have
become increasingly important in today’s cyber-defense.
SIEM development has spawned open source solutions
like OSSIM [4] as well as various commercial products.
Combined with the assessment of conventional log files,
multi-source event aggregation and correlation is a promising
new approach to understanding cyber-attacks.

5.3.1 SIEM-like systems

SIEM-like systems are prototypical of the multi-source
domain. One of the earliest multi-source approaches was
introduced by Gorodetski et al. [58]. Their general paper
on multi-agent system (MAS) technology for IDS encom-
passes attack simulation and intrusion detection learning. A
model mapping attacker intentions to actions as well as tar-
gets is introduced and formally described by the authors. The
proposed simulator considers network traffic data, data from
the OS audit trail, system logs, and application audit data.
Combined attacks with e.g. shared source IP addresses are

detected through pattern matching on pre-processed input
streams. Specific learning algorithms are mentioned but not
explained in detail. �Tags: G{intelligence, detection}; T{host
andnetwork intrusion}; I{system logs, app logs, network traf-
fic, alerts}; D{pattern}; A{behavioral}; K{yes: supervised
learning, Bayesian classification, visualization}; S{aware,
denotational}; APT{1,3-7: general approach, attack simula-
tion}.

A general APT attack model following the intrusion kill
chain [67] is presented by Bhatt and Gustavsson [17]: The
logging module collects security events as well as various
logs and submits them for analysis. Malware forensics is
part of the framework but not specified in detail. A dedicated
intelligence module is responsible for event correlation and
searching. An experimental implementation was realized on
a 5-node Apache Hadoop cluster and tested with constructed
log files. �Tags: G{intelligence, analysis}; T{malware, host
and network intrusion}; I{system logs, app logs, alerts};
D{pattern}; A{behavioral}; K{no}; S{aware, denotational};
APT{3,5-7: general log analysis approach}.

The system proposed in [99] aims to establish real-time
situational awareness through semantic event fusion to detect
multi-stage attacks. Event streams from intrusion detection
systems are correlated with pre-defined alert templates and
mapped to various categories (e.g. scan or intrusion), ser-
vices (e.g. web, FTP), protocol stacks, and consequences
(e.g. DoS). Attack criticality is also modelled. Unlike Bhatt’s
primarily time-based approach [17], Mathew et al.’s basis
for correlation are similarities of IP addresses and semanti-
cally linked events. The authors implemented their system
using the model editor FUME [98] and the fusion engine
INFERD [137] on an emulated OSIS network [57]. �Tags:
G{intelligence, correlation}; T{network intrusion}; I{system
logs, app logs, alerts};D{pattern, similarity};A{contextual};
K{no}; S{aware}; APT{1,3,6: network activity}.

Atighetchi et al. [11] present ‘Gestalt’, a cyber-information
management system that simplifies the access to event data
stored on various systems. Unlike classical SIEM solutions,
Gestalt leaves the data where it was generated. The focus
lies on forensics: the actual methods and techniques required
to access the data are abstracted and described using a new
CyberDefense Language (CDL).All information is provided
via a single interface accessible from a central management
workstation – something that is achieved through the use
of the Asio tool suite [15] and the web ontology language
OWL [100]. Queries are submitted using SPARQL [152].
�Tags: G{intelligence, correlation, response}; T{host and
network intrusion}; I{system logs, app logs, network traf-
fic, event traces, alerts};D{ontology};A{contextual};K{no};
S{denotational}; APT{1,3-7: multi-system data correlation}.

Sadighian et al. [127] propose an alert fusion approach that
incorporates public vulnerability data (CVE, NVD) and con-
textual attack information such as network configurations,
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host settings, application requirements, and user-specific
configurations. This data is retrieved from a dedicated con-
figuration management system. The collected information
is then converted to a unified format and combined with
common IDS alerts. A pre-populated set of ontologies for
alerts, context information, and vulnerabilities is used as
basis for the subsequent decision process. Fusion rules
are built using SWRL, a language based on the OWL
description logic (OWL-DL). In contrast to other solu-
tions, Sadighian’s system focuses on alerts collected by
different sensors but describing the same event. This poten-
tially reduces redundant and irrelevant information. �Tags:
G{detection, analysis}; T{network intrusion}; I{threat info,
network traffic, alerts}; D{ontology}; A{contextual}; K{no};
S{denotational}; APT{1,3,6: network activity event fusion
rules}.

5.3.2 Event correlation solutions

The second focus of multi-source data analysis is correla-
tion. Unlike SIEM systems, the focus here lies more on the
underlying correlation algorithms and less on data generation
or management considerations. This promises high synergy
potential between solutions of the two categories.

In [54], the authors describe the application of data min-
ing techniques to identify patterns in data. A combination of
association analysis, which aims to discover interesting rela-
tionships, and similarity-based propagation analysis is used
to fuse log events into semantic incidents. Host data, user
data, and events from both the OS and antivirus software are
used as input for classification. �Tags: G{intelligence, corre-
lation}; T{malware, host intrusion}; I{system logs, app logs,
event traces}; D{pattern, similarity}; A{contextual}; K{yes:
deductive learning}; S{aware}; APT{4,5: host event discov-
ery}.

Langeder [91] introduces a framework for dynamic threat
recognition and combines it with a proof-of-concept clas-
sification comparing Bayes, SVM, and decision trees. Patt-
ernized rules are extracted from a training environment and
include attributes such as IP addresses, time, HTTP status
and request information, ports, users, and more. Best results
were achieved with the SVM approach; however, processing
performance was only assessed for small data sets. Further
domain testing is required to generically compare the various
classification methods. �Tags: G{intelligence, correlation};
T{network intrusion}; I{app logs}; D{pattern, anomaly};
A{contextual}; K{yes: unsupervised learning, SVM, deci-
sion tree, Bayesian classification}; S{aware}; APT{1,3,6:
network event classification}.

Bordering the domain of network-based correlation solu-
tions, the work by Debar and Wespi [39] addresses IDS
weaknesses such as event flooding, lack of context, false
alerts and lack of scalability. The authors propose an intru-

sion detection architecture that correlates the output of
several host-based and network-based probes to produce
a condensed view of an incident. Next to the definition
of conceptual and operational requirements, an alert class
hierarchy considering both target and probes is presented:
Generic information and probe statusmessages are combined
with victim host information such as process or port details.
�Tags: G{intelligence, correlation, analysis}; T{host and
network intrusion}; I{alerts}; D{-}; A{contextual}; K{no};
S{aware}; APT{3-7: host and network alert correlation}.

Strasburg et al. [138] introduce S-MAIDS, a seman-
tic model for automated tuning, correlation, and response
selection in IDSs based on observable attack indicators the
authors call ‘signals’. Each signal is decomposed into a
domain/characteristic such as the high-level protocol used
(e.g. TCP), a type constraint (e.g. integer), and an value (e.g.
80). The proposed model is formalized using OWL. Cross-
system correlation was assessed using IIS log messages and
the output of a Netflow-aware system. As a reasoning-based
ontology, S-MAIDS requires predefined attack responses to
be present in the knowledge base.�Tags:G{intelligence, cor-
relation, response}; T{host and network intrusion}; I{app
logs, network traffic}; D{-}; A{contextual}; K{no}; S{aware,
denotational}; APT{3,6: app and network event correlation}.

5.4 Semantic domain

Unlike the other three categories, this section focuses solely
on formal definitions and general ontology models. Only
approaches that specifically revolve around formal def-
initions, ontologies, and other semantic approaches are
reviewed here. Also, this section includes articles that cannot
be clearly attributed to one of the other domains. Semantics-
aware solutions designed to support attack detection on the
host or network can be found in the respective subsections
above.

A number of models and some select data providers focus
on semantics-based detection of cyber-attacks or malicious
behavior in general. Most of the time, the term ‘semantics’
is used very loosely and only refers to the process of assign-
ing meaning to e.g. specific patterns of system functions or
network packets. Other solutions identify sequences of code
that produce identical results.

While almost every solution discussed in this paper can be
considered semantics-aware, this particular section focuses
on semantics-based approaches per our definition found in
Sect. 2.2.

5.4.1 General semantic systems and ontologies

Semantic systems and ontologies have found resonance
with the information security community a good while ago.
Landwehr et al. [90] were among the first to define a taxon-
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omy of computer program security flaws. While that was not
an ontology per se, their work laid the foundation for later
attack models. Raskin and Nirenburg [117] eventually intro-
duced a semantic approach to information security in regards
to the unification of terms and nomenclature. Today, several
application-independent semantic systems can be found in
the literature:

Razzaq et al. [120] describe a general approach to
ontology-based attack detection and argue its suitability for
web application security purposes. While they also propose
a domain-specific model (see [121] in the overview tables),
the paper primarily introduces general ontology engineer-
ing methodologies such as ‘Methontology’ [49]. A layered
model for ontology design is presented.

The paper by Anagnostopoulos et al. [5] is a workable
example for the application of semantics to general intrusion
scenarios. The authors seek to classify and predict attacker
intentions using a Bayesian classifier and a probabilistic
inference algorithm. Their semantic model includes both
legitimate and illegitimate actors, the formal characteriza-
tion – dubbed behavior – of the actor, activities in the form of
sequential events, concrete commands issued, and an over-
all state of attack triggered by specific commands. �Tags:
G{prediction, intelligence}; T{host and network intrusion};
I{-}; D{pattern, ontology}; A{contextual}; K{yes: deduc-
tive learning, Bayesian classification}; S{axiomatic, deno-
tational}; APT{3-7: general approach}.

Yan et al. [160], on the other hand, focus on the conversion
of raw sensor alerts into a machine-understandable format in
order to enable easier data fusion. They advertise the use of a
Principal-subordinate Consequence Tagging Case Grammar
(PCTCG) that considers object, location, method, cause, ‘has
object’ and ‘is part of’ rules, attack stage, and attack con-
sequence of an intrusion. Together with a 2-atom semantic
network [149], their system is able to generate attack scenario
classes that can be extracted and used as detection templates
for e.g. IDS systems. �Tags: G{intelligence}; T{host and
network intrusion}; I{alerts}; D{ontology}; A{contextual};
K{yes: deductive learning, grammar-based classification,
semantic network extraction}; S{axiomatic, denotational};
APT{3-7: general approach}.

5.4.2 Languages and models

There are a number of languages that form the basis for
many a semantic model. Meier [101] offers a good overview
of approaches by introducing a model of attack signatures
for use on pattern detection systems. It is based on a meta-
model for the semantics of database events by Zimmer and
Unland [166]. The author identifies several types of informa-
tion relevant for misuse detection: Exploit languages used
to encode attacker actions, event languages that represent
information to be analyzed by an IDS (e.g. HiPAC, SNOOP,

NAOS, and ACOOD), detection languages used to describe
signatures (rule-based (e.g. P-BEST), state-transition-based
languages (e.g. STATL, IDIOT IDS), algebraic languages
(e.g. LAMBDA, ADeLe, and Sutekh), response languages
(alert information), and report languages such as the Intru-
sion Detection Message Exchange Format (IDMEF) [38].

For example, Totel et al. [143] correlate events from dif-
ferent IDS sources to combat the usually high number of false
positives. The authors developed ADeLe, a language specifi-
cally tailored to describe exploits and attacks from the target’s
perspective in addition to the intrusion response. Their cor-
relation model supports event sequences, (non-)occurrence,
recurring events, and time constraints. While ADeLe is not a
data provider or analysis system, its event correlation capa-
bilities make it especially useful for describing multi-stage
attacks. �Tags: G{intelligence, response}; T{host and net-
work intrusion}; I{-}; D{-}; A{-}; K{no}; S{denotational};
APT{3-7: attack description language}.

6 Results

In this section we investigate the general and statistical find-
ings derived from this survey of 60 domain articles. This
includes scoring per the quality assessment introduced in
Sect. 3.4, a list papers identified as especially good fit for
APT detection efforts, as well as the full categorization (see
Sect. 4) of all solutions.

6.1 Findings summary

The mean date of publication of the surveyed papers is 2009.
There are two deviations from the rule set by the publication
date constraint (2003): the key papers [87] and [39] were
included for their overall contribution to the field despite
their more advanced age. See Table 1 for a breakdown of
publication dates.

Interestingly, the focus on specific techniques changed lit-
tle over the years. For example, system event traces are still
widely used as basis for threat detection and analysis. Of
the 30 papers published more recently (after 2010), 40 %
process system events. This stands in contrast to a 41.7 %
overall ratio. The same can be observed for a number of
categories, including learning techniques. Even the use of
semantics-based approaches did not significantly increase.
Shy of 57 % of the post-2010 papers can be classified as at
least partially context-based; this is only slightly higher than
the overall average of 53.3 %. The trend towards semantic
solutions is recognizable, but not notably so.

In contrast, 9 of the 13 top-scored (score >7) papers that
have been awarded the highest score in APT domain applica-
bility (Q5) were published in recent years. This shows that
the focus is slowly shifting towards the detection and analy-
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Table 1 Publication date breakdown

Paper Year Paper Year Paper Year Paper Year

[39] 2001 [26] 2007 [53] 2010 [2] 2013

[58] 2003 [110] 2007 [66] 2010 [12] 2013

[159] 2004 [164] 2008 [20] 2010 [127] 2013

[143] 2004 [27] 2008 [128] 2010 [138] 2013

[161] 2004 [113] 2008 [99] 2010 [121] 2014

[6] 2005 [129] 2008 [52] 2010 [102] 2014

[23] 2005 [114] 2008 [60] 2011 [156] 2014

[5] 2005 [132] 2008 [72] 2011 [148] 2014

[28] 2005 [24] 2009 [41] 2012 [3] 2014

[165] 2005 [1] 2009 [155] 2012 [91] 2014

[55] 2006 [119] 2009 [88] 2012 [17] 2014

[95] 2006 [54] 2009 [34] 2012 [11] 2014

[16] 2006 [13] 2009 [7] 2012 [65] 2014

[74] 2007 [124] 2009 [97] 2012 [163] 2014

sis of targeted attacks, even though many of the articles were
not authored specificallywithAPTs inmind. As prime exam-
ples for techniques that can more easily be transferred to this
new class of threat, these 13 papers are of special interest to

answering research question R4 thanks to their determined
scores. See Table 2 for a complete list.

In addition to particularly APT-relevant articles, highly
graded works are of special interest as well. In Table 3, we
take a closer look at papers scored 8.0 or higher. Because of
the constraints defined in Sect. 3, all of the research has been
classified with a TA (Q5) score of at least 0.5.

Delving deeper into the individual stages of a targeted
attack, we see that exploitation, installation, C2, and action
stages are roughly equally represented. We see 34 to 37
methodologies that directly or indirectly contribute to phases
4-7. The reason can be found in the nature of common mal-
ware: A larger number ofmalicious software variants include
functionality that is comparable to the operations implied by
the APT kill chain seen in Fig. 1. Initial (exploit) code execu-
tion, installation activity, remote communication andpayload
execution is not necessarily unique to targeted attacks and
can be spotted by a wide range of tools that consider host or
network activity.

The delivery phase (3) is in the scope of 50% of the sur-
veyed papers. However, as delivery may include common
e-mail communication and local device activity, most of the
solutions only indirectly consider it – more focused work
specifically targeting delivery actions is still rare.

Table 2 Papers scoring highest
for TA relevance (Q5 = 1.0;
Overall >7.0)

Paper Key research Domain Score

[72] Host-side C2 traffic identification and behavior
extraction through graph mining (Jackstraws)

Host 8.5

[124] Heuristic classification of dynamically generated
application traces (Malheur)

Host 8.5

[41] Automatically created application profiles through
graph-based function/parameter tracing

Host 7.0

[102] Connection discovery for actors, machines, and
malware through code semantics and function
behavior (VirusBattle, BinJuice)

Host 7.0

[113] Emulation of human reasoning process to distinguish
user from attacker actions

Host 7.0

[121] Detection and classification of web app attacks by
means of an ontological model

Network 8.5

[163] Detection of C2 traffic through malicious and benign
HTTP traffic templates (BotHound)

Network 7.5

[7] Attack ontology generation based on threat
intelligence information and event fusion

Network 7.0

[12] Behavior clustering through industry/location
correlation based on URL strings (SpuNge)

Network 7.0

[148] Flow-based traffic monitoring system capable of
statistical anomaly detection

Network 7.0

[11] Ontology-based data management system for central
forensic data analysis (Gestalt)

Multi-source 7.5

[58] Attacker intention modelling and traffic simulation
system considering multi-source data

Multi-Source 7.0

[143] Event correlation through attack/exploit language
describing the target’s view (ADeLe)

General 7.0
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Table 3 Papers with the highest
overall score (Overall >8.0)

Paper Key research Domain Score

[28] Static malware detection algorithm incorporating
semantics and depicted as control-flow graphs

Host 8.5

[72] Host-side C2 traffic identification and behavior
extraction through graph mining (Jackstraws)

Host 8.5

[124] Heuristic classification of dynamically generated
application traces (Malheur)

Host 8.5

[27,52] Malware classification and behavior extraction
through dependence graphs (MiniMal, Holmes)

Host 8.0

[86] Host-based function anomaly detection system with
added context

Host 8.0

[156] Data flow graphs depicting execution flow of various
objects (DAVAST)

Host 8.0

[121] Detection and classification of web application
attacks through ontological model

Network 8.5

Reconnaissance (phase 1) is covered by 15 solutions,most
of which are capable of analyzing web traffic that could yield
insight into suspicious scanning activity or targeted infor-
mation mining from publicly accessible resources. Stage 2
(weaponization) is currently not in the scope at all, as it
takes place solely on the attacker’s systems. Here, alterna-
tive approaches such as active intelligence into code reuse or
post-attack attribution need to be investigated.

Taking a closer look at the distinctive semantic categories
defined in Sect. 2.2, we most often see semantics-aware
solutions (44 papers). This is followed by solutions that
include formal denotations of languages or rules (deno-
tational semantics, 14 papers). Axiomatic and operational
semantics are still rarely used (6 and 4 papers, respectively).

InSect. 7,wediscuss the implications of thesefindings and
present a model of a workable ATA detection system based
on key components identified in the surveyed literature.

6.2 Statistics

Primary domain (see ‘General categorization’) is a unique
property used for initial categorization. Each article can be
assigned a single domain. Of the 60 papers surveyed, 30
present a host-based solution, 20 focus on the network, 7
describe multi-source approaches, and only 3 could not be
classified or were independent of a specific application.

Contributions most often encompass methods or mod-
els and a (prototypical) tool or system (39 papers each). 19
papers introduce a formalism or language while 15 papers
revolve around a more general framework. See Fig. 4 for a
breakdown chart and Table 4 for a full overview.

The goals of the respective solutions noticeably lean
towards threat detection: 42 papers discuss approaches
specifically aimed at detecting attacks or spotting attack indi-
cators. Threat intelligence or classification components could

Fig. 4 (a) domain focus, and (b) general categories

be found in 26 articles. The actual analysis of a threat – done
usually to determine its nature or goal – is an integral part of
19 papers, followed by 14works that also consider threat cor-
relation or event fusion. Only 6 solutions attempt to predict
threats, and not a single one focuses on preventive measures.
Threat response is also rarely found: only three articles claim
to support follow-up activities to a previously detected attack.
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Fig. 5 QA and overall scores for each surveyed paper

In contrast to the diverse goals of the surveyed approaches,
the type of threats combated is almost evenly distributed
between malware (31 papers), host intrusions (28 papers),
and network intrusions (27 papers). This shows that counter-
ing each means of attack is considered equally important by
the research community. See Table 4 for details.

Data collection is distinctively dominated by dynamic
methods. 51 papers describe dynamic techniques to acquire
input data. While data gathering capabilities do not neces-
sarily mean that the solution records information by itself,
a large number of solutions (47 papers) do in fact include
monitoring functionality or at least ameans to directly import
results from integrated tools.

Static retrieval is used by 5 solutions, whereas 5 approac-
hes do not collect data at all. 23 solutions dynamically
monitor functions that are often logged as event traces. In
contrast, 21 approaches sniff, record, or interpret network
packets. Conventional logging is used in 8 cases. Code, disk,
and memory monitoring are used least often – only three to
four systemsdirectly observe respective activities. In terms of
type, capabilities mostly correspond to the approach identi-
fied above:Wemost often see system event traces (25 papers)
and network traffic (23 papers). External alerts (11 papers),
system and application logs (7 and 9 papers, respectively),
and direct binary (raw) data input (11 papers) are used less
often. General threat information is only collected in 2 cases.

Flow functionality is usually found in network-domain
articles. Of the 47 papers that monitor information, 8 utilize
data flow processing.

With the exception of emulation (7 papers), monitoring
environments almost equally encompass native (17) and VM

(14) systems. Interestingly, 14 papers do not specify a partic-
ular environment. The reason can be found in the nature of the
works –many solutions are not yet part of an operational sys-
tem but only roughly sketch a proposed functionality. Also,
there exist a number platform-independent implementations.
See Table 5 for details.

A total of 56 papers describe either analysis or detection
functions – or both. Similar to data gathering, detection also
leans towards dynamic techniques were the attack or sample
under scrutiny is executed on an isolated system or is let
loose in a testing network. More often than not, this analysis
environment is also the one that monitors abovementioned
data.

Pattern-based systems are most common (24 papers).
Anomaly detection is used in 13 cases. This is only surpassed
by ontologies – 15 solutions use various ontology models,
languages, and tools to describe and detect a multitude of
threats. Since this paper expressively focuses on at least
semantics-aware approaches, this number is not surprising. In
accordance, distinctively semantics-based or context-aware
solutions are described in over 50 % of the papers. Less
formal behavioral approaches (26 papers) are almost as com-
mon. At the same time the trend shows that attribute-based
detection is on the decline (9 papers). This mirrors the opin-
ion of many researchers that signature-based detection found
for example in AV software is slowly becoming obsolete
[21,96,111,118].

On the processing side, on-demand analysis (28 papers)
on either the local system (23 papers) or a central server (29
papers) is most widely used. Still, a total of 11works claim to
have achieved real-time processing. See Table 6 for details.
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Knowledge generation is part of 32 of the surveyed
solutions. Supervised learning is most widely used (14
papers), followed by deductive learning (7) and unsuper-
vised approaches (2 papers). The specific methods used are
diverse and donot lean towards one specific approach.Bayes-
based systems are slightly more common than e.g. outlier or
change detection (5 vs. 1 paper). On the extraction side, we
most often see behavior graphs. Only five solutions offer
post-analysis visualization. Part of the reason is the explicit
exclusion of pure visualization systems. See Table 7 for a list
of papers with knowledge generation capabilities.

6.3 Scores

Quality assessment was conducted through scores ranging
from 0 to 10. The average score awarded to the reviewed
papers is 6.94. Eight of the articles received an excellent
score of 8 points or higher, while 38 papers were given a
solid 7-point or above rating. Interestingly, the QA average
(3.59 of 5) is slightly higher than the average expert rating
(3.35).

In direct response to the QA questions, we have calcu-
lated average scores and assessed the number of papers that
achieved themaximum score of 1 point for the respective cat-
egory (see Fig. 5). It stands to notice that the attack domain
(Q2) was usually well defined. 44 papers were given the full
point; the average score was close to 0.87. In contrast, the
definition and explanation of the type of operational data
(Q4) used by the solutions was often found lacking. Only
ten papers received the full score, resulting in an average
grade of only 0.56. In regards to targeted attacks, 15 papers
were found to be especially well-suited for APT defense-
related objectives. See Fig. 5 for a full score breakdown of
all reviewed papers and Tables 2 and 3 for top picks.

7 Discussion

7.1 Research questions

In this study, we have addressed 4 specific research ques-
tions that are now evaluated in this section. The overarching
goal of the paper was to provide an overview of approaches
and methods that could be employed to strengthen an orga-
nization’s defense against advanced persistent threats and
targeted attacks in general. Effective solutions tailored to
the ATA/APT realm are very rare, presenting researchers
with ample opportunity to develop specialized solutions that
transport conventional cyber-defensemechanisms to this new
threat domain.

In answer to R1 (“Which models, frameworks, formal
definitions, and tools exist to describe information system

attacks?”), we have identified various models, frameworks,
formal definitions, and tools that describe information system
attacks. The solutions and techniques they employ can serve
as foundation for the design or technical implementation of a
system capable of identifying targeted attacks at various lev-
els: the host, the network, or a custom combination thereof.
Armed with this knowledge, future research can be focused
and prioritized in accordance to the user’s specific needs in
terms of data formats, specific approaches to gathering and
monitoring as well as knowledge generation capabilities. A
detailed evaluation and overview of all reviewed solutions
can be found in Sect. 6.

In response to R2 (“Which semantics-aware and
semantics-based tools and techniques exist to detect and
evaluate attacks?”), we have highlighted solutions that use a
semantic approach to perform their primary task. Semantics-
aware tools are of significant interest when they establish
attack context (see also contextual analysis technique in
Table 6) and thereby enable research into the still problem-
atic differentiation between common and targeted attacks.
Semantics-based approaches offer additional insight and are
often able to link actors and assets with a specific attack
action. Enabled by the semantic categorization introduced in
Sect. 2.2, we have highlighted solutions that focus on execu-
tion correctness/state transition, correlation through rules or
I/O inference, as well as denotational approaches. This can
help to e.g. better understand attacks and their consequences,
identify high-level goals, or determine existing flaws in the
defender’s security design or implementation.

Techniques useful to analyzing targeted attacks are iden-
tified through their Q5 score as well as their APT stage
affinity tag. This addresses research question R3 (“What are
promising approaches to ATA detection and how can they
be classified?”) by highlighting solutions deemed promising
for APT/ATA detection and analysis. With semantics-based
methodologies in theminority, there is still room for improve-
ment in the areas of formalization as well as axiomatic and
operational semantics.Next to awareness ofmeaning, knowl-
edge generation was determined to be of utmost importance.
Many papers offer functionality enabling the extraction of
certain behavioral particularities that support the process of
learning typical APT activity.

In accordance to R4, we determined which information
is actually most helpful to the general task of detecting and
understanding ATAs by seeking to encompass all primary
categories (see 4. In combination with the aforementioned
APT stage tags, it becomes possible to maximize the scope
through diversity of approach. With the aim to put together
a system design checklist for a successful holistic defense
strategy (see Table 8 for details), we infer that:

– The highest possible number of primary goals (G) should
to be considered for maximum breadth of defense;
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– Every threat type T needs to be countered as they are all
part of a typical ATA;

– Each data input type I should be taken into consideration
for a complete view on the system and its neighboring
network infrastructure;

– Detection methods D and analysis techniques A need
to be diverse to maximize obfuscation and evasion
resilience;

– Knowledge generation K should be part of at least one
solution per threat type so that the defender does not only
detect, but also learn from adversary action on both host
and network level;

– Each APT stage per Hutchins’ model [67], possibly
excluding weaponization, should be covered.

This can either be achieved through a combination of
approaches – ultimately requiring correlation – or by utilizing
a system general enough to be flexible in its application. The
necessary information to assemble such a defense framework
can be extracted from the reviewed and scored papers and is
further detailed in the subsection below. We focus specifi-
cally on the kind of information required to identify targeted
attacks and show how a system considering most of the APT
stages as well as a diverse range of data collection and analy-
sis methods could look like. To this end, we conceptualized
the approach starting from the choice of data provider (data
collection approach as summarized in Table 5) up to the cor-
relation and interpretation of events. The resulting roadmap
is intended to assist further research into appliedATAdefense
and other domain-aware countermeasures.

7.2 APT defense framework

The approaches discussed in this study can be used to assem-
ble a model of a system capable of dealing with a variety of
targeted attack scenarios. While other defense mechanisms
only return isolated events or counter single attacks, a holistic
system would interpret the collected information and come
to amore detailed verdict. Each satisfied item in our checklist
would increase the confidence in the result.

The following roadmap details a suggested design process
for a conceptual ATA defense system based on the solutions
reviewed in this survey. Please keep in mind that a concrete
technical implementation is considered future research and
not part of this paper.

We differentiate the following stages: Threat definition
and modeling, formalization and ontology building, as well
as data provider selection.

7.2.1 Threat definition and modeling

Prior to implementation, the defendingorganizationwill have
to define both assets and threats. For threat definition, we

found the model by Giuara and Wang [56] (see Fig. 1)
and the more common cyber kill chain by Hutchins et al.
[67] to be simple yet effective solutions for modeling tar-
geted attacks. The decision of which model to use largely
depends on personal preference and data exchange require-
ments: While the cyber kill chain model considers command
and control activity and weaponization as separate stages,
Giuara’s model is more detailed when it comes to the col-
lection of data. Reconnaissance, exploitation, operation, and
exfiltration stages are mostly identical, albeit named dif-
ferently at times. Both models can be used in conjunction
with MITRE’s APT-enabled Structured Threat Information
eXpression (STIX) data exchange format [109], which was
developed to represent threat information in a comprehensive
manner.

Before existing data sources can be combined and inter-
preted, the defender also needs to evaluate their own assets
in order to determine likely targets. This organizational step
goes hand in hand with an assessment of possible attacker
goals and methods. The resulting top-down view on a poten-
tial targeted attack is the foundation for subsequent ontology
building and goal mapping. For initial actor and asset evalua-
tion, we propose the use of goal modeling techniques: KAOS
[122], GRL [147], and the i* Strategic Dependency (SD)
model [46] are promising candidates for implementation.
Subsequent technical solutions will want to add reasoning
to the mix – this is where ontologies come into play.

7.2.2 Formalization and ontology building

Ontologies were identified as a promising way of approach-
ing the challenge of formalizing threats and threat responses
in a semantics-aware manner. Evaluating the top results
shown in Tables 2 and 3, we can see that ontologies and
related semantics-based methods are among the more highly
scored solutions [7,11,102,113,120].

The information security community has only in recent
years begun to truly embrace the concept. Originally a disci-
pline of philosophy, ontologies in information science have
become a formal approach to describing data types, prop-
erties, and interrelationships of entities within a specific
domain. Their reasoning capabilities and data formats set
them apart from semantics-unaware relational databases.
Depending on general requirements and desired granular-
ity, system designers can choose from numerous languages
or systems. Data formats and languages include RDF, OWL,
OWL-DL, and SWRL, among others. In the reviewed papers,
ontology building and design often relies on established
implementations like Protégé [136] or Apache JENA [8].
Queries to an ontological system are usually written in
SPARQL [152].

For an ATA detection system to succeed, research will
have to bridge the gap between pure formalization and
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event interpretation by combining various data sources into a
domain-complete attack ontology. Only then can we collect
all available information and assign it a place in the greater
picture. Fox et al. [51] emphasize that an ontology needs
to be designed with a number of competency question in
mind. Each question is representative for the information the
completed ontology is supposed to answer. For designing an
APT defense system, these questions would have to revolve
around data providers and specific attack activities:

– Which data providers do I need to utilize in order to
be able to detect a satisfyingly high number of targeted
attack stages?

– Which data provider is able to detect which attack stage
or activity?

– What are the techniques used in an activity and how do
they translate to data provider events?

– Is the current activity indicative of a targeted attack, and
if yes, which?

– Who are the actors of the attack and which assets are
targeted/affected?

Fused into one system and complemented by a suitable
reasoning engine such as the ones offered by various Protégé
plugins [136], such an ontology would be able to answer
straightforward, natural-language questions about any hypo-
thetical or suspected ongoing attack. For this to work, it is
necessary to fill the ontology with detailed knowledge of
the attacks and assets identified in design stage 1. Only then
can we move on to the selection and implementation of data
providers.

7.2.3 Data provider selection

Once the ATA ontology has been defined and supplied with
the necessary knowledge as well as inference rules, we can
begin to link each attack stage or activity to specific events.
As argued by Hutchins et al. [67], countering the different
stages of an attack will require both analysis and detection
systems.The asset ownerwill have to choose anumber of data
providers capable of collecting both host-based as well as
network-based information. It is prudent to employ systems
that, put together, encompass as many types of input types
(see Table 5) as possible.

The reasons are manifold: Reconnaissance and delivery
will likely involve networked resources and may not even
register on the host. Since different layers of an organiza-
tion’s network may be accessed or analyzed by the attacker
without him actually copying or manipulating resources, the
traffic passing through the LAN as well as the implied gen-
eral behavior is of particular interest. Flow-based approaches
would help identify anomalous communication patterns
while suspicious web traffic could be a sign of initial prob-

ing activities. Alerts that are harmless by themselves could
be correlated to other findings using a dedicated SIEM-like
system.

Sooner or later during exploitation, installation, or action
stages, the attacker will interact with a local system. Here,
host monitoring and malware detection comes into play.
Again, the defender will not have to reinvent the wheel to
protect himself from isolated malicious activity. The true
challenge is registering events that do not appear to be harm-
ful by themselves, but might be part of a larger attack. While
data collection and correlation are well-researched, mapping
individual events to a greater picture is still a challenge. This
study shows that attack semantics is a term used in many a
work, but that there is often a significant gap between promise
and delivery.

Source data will also be one of the key success factors
of any practical APT defense implementation – inadequate
or too low a number of data providers will make it nigh
impossible to identify attacks affecting specific or multi-
ple targets. On the other hand, it might not be feasible to
include too many sources lest the system would experience
slowdowns or a decrease in interpretation accuracy. An effec-
tive implementation will have to carefully consider available
solutions and hand-pick a small number of providers suited
to the respective task. This survey identified monitoring and
data classification [12,27,121,124,148,156] aswell as attack
description, profiling and extraction to be a vital part of this
stage of ATA identification [41,72,143,156]. Various detec-
tion systems spread across all the primary detection domains
will help to assemble the picture [28,148,163].

To further support data provider selection and to offer
a simplified view on the surveyed solutions, we introduce
a design checklist based on the categorization used in this
study (see Table 8). Each key property has been awarded a
minimum coverage threshold (in square brackets) that should
be satisfied by the chosen data providers.

Once data providers have been selected based on spe-
cific needs, the actual semantic engine can be built around
the objective of detecting, explaining, and locating targeted
attacks. Developing such a system will undoubtedly be a
major research challenge in the coming years.

7.3 Limitations of the study

This study slightly deviated from the guidelines presented
by Kitchenham [82] as the search process was only partially
automated and relied on some manual corrections to search
strings and sources. We also refrained from including papers
beyond the 50th result of the respective search engine. This
happened only rarely since, thanks to search term refinement,
the number of results was usually lower than that.

The post-review exclusion of articleswith a low total score
is also not cited as standard practice but helped to keep the
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Table 8 System design checklist

Prediction Prevention Intelligence Correlation Detection Analysis Response

G met [5/7]

Malware Host intr. Network intr. Attribute Behavior Context

Threat info System logs App logs Netw. traffic Events traces Binary/raw Alerts

I incorporated [5/7]

Recon Weaponiz. Delivery Exploitation Installation C2 Actions

APT stage covered [5/7]

G goal, T threat type, A analysis technique, K knowledge generation, I input data type

number of surveyed papers to a manageable minimum. Fur-
thermore, we violated the publication year constraint in two
cases where we felt that an exception was appropriate for
the sake of completeness. Please see Table 1 for a full date
breakdown.

To limit the scope of the paper, the articles reviewed
in this survey have solely been chosen using the criteria
defined in Sect. 3. Additional literature catering to specific
topics not covered by the initial search terms was usually not
considered, even if certain aspects were later identified as
potentially relevant, such as solutions focusing primarily on
knowledge generation.

8 Conclusion

The detection of advanced targeted attacks is highly inter-
woven with more conventional approaches to intrusion or
malware detection. In this study, we identified 60 articles that
introduce methods, models, frameworks, formalisms, or sys-
tems that could potentially contribute to the defense against
APTs and other multi-stage cyber-attacks.

With ontologies and general semantics-based approaches,
an increasing number of attack models have found their
way into the field of information security. The shift towards
ATA-aware solutions is noticeable, but not as pronounced
as suggested by many a title. We identified only a total of
13 papers (see Table 2) that could contribute significantly
to the fight against advanced attackers, while the remainder
provides tools in the fight against more common or spe-
cific cyber-threats. Still, each of the reviewed articles has
something unique to offer and should be considered when
developing new systems.

To simplify prioritization, the introduced categorization
enables researchers to conveniently browse for solutions best

suited to their particular endeavor. This is complemented by
the design concept of an defense frameworkwhich uses input
from various data sources to detect and analyze a targeted
attack. Thanks to our simple but comprehensive checklist,
the task of designing such a system has become considerably
easier.

8.1 Future research

This study introduces a number of future research oppor-
tunities. Based on data provider classification, it becomes
possible to determine the exact type and nature of practi-
cal solutions needed to detect APTs with confidence. We
are currently working on an OWL-based ontology encom-
passing categorized data providers, involved actors, utilized
techniques, and concrete system events all linked together
by a cyber kill chain model. Especially the interpretation of
truly complex, multi-stage attacks is still largely unexplored.
In future works, we will thoroughly define the requirements
and capabilities of a full APT detection system andwill intro-
duce a detailed model that builds upon the results of this
structured survey.

Minimizing the number of data providers needed to inter-
pret attackswithout compromising the accuracy of the results
will be another predominant research challenge in the near
future. New monitoring and analysis tools will have to
consider ATA scenarios from the get-go and increasingly
utilize data correlation in order to bring the three domains
of host-based, network-based, and multi-source detection
closer together.
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