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Abstract—We present a new graph compressor that detects
repeating substructures and represents them by grammar rules.
We show that for a large number of graphs the compressor
obtains smaller representations than other approaches. For RDF
graphs and version graphs it outperforms the best known
previous methods. Specific queries such as reachability between
two nodes, can be evaluated in linear time over the grammar,
thus allowing speed-ups proportional to the compression ratio.

I. INTRODUCTION

Large graphs have been gaining importance over the past
years: be it RDF graphs and the semantic web or social networks
such as Facebook. There is a plethora of recent research papers
dealing with the analysis of large graphs, see e.g., [1]–[4].
Naturally, compression is an important technique for dealing
with large graphs, cf. Fan [5]. It can be applied in many different
ways. For instance, systems that use distributed processing
(e.g., via Map/Reduce) need to repeatedly send large graphs
over the network. Sending these graphs in a compressed form
can have a huge impact on the performance of the whole
system; see e.g., the Pegasus system [6], which applies off-the-
shelf gzip compression to an appropriately permuted matrix
representation of the graph [7]. Other applications are to use
the compressed graph as in-memory representation, or, to build
from it specialized indexes that support certain queries. An
example for the first application is the compressed RDF graph
representation by Álvarez-García et al. [8], an example for the
second is the query-based compression by Fan et al. [9] which
removes substructures from the graph that are not relevant for
the supported class of queries.

Outside of the database community, compression of large
network graphs has been studied already for more than a decade,
possibly starting with the WebGraph framework by Boldi and
Vigna [10]. Their methods proved very effective in compressing
web graphs, but are less effective for other graphs, such as
social graphs [11]. Furthermore, network graphs are commonly
unlabeled and their methods are thus difficult to adapt to graphs
with data, such as RDF graphs.

Grammar-based compression is an attractive formalism of
compression. The idea is to represent data by a context-free
grammar. Consider the string ababab. It can be represented
by the grammar {S → AAA,A → ab}, whose size (sum of
lengths of right-hand sides) is smaller than the given string.
Remarkably, this simple formalism can be used to capture well-
known compression schemes, such as Lempel-Ziv, see [12].
The attractiveness of grammar-based compression stems from
its simplicity and mathematical elegance. It can, for instance, be
used to explain one of the first grep-algorithms for compressed
strings [13]. Besides grep there are many problems that can

be solved in one pass through the grammar (see [14]), thus
providing a speed-up that is proportional to the compression
ratio. How can we find a smallest grammar for a given string?
This problem is NP-complete [12]. Various approximation
algorithms have been proposed, one of which is the RePair
compression scheme invented by Larsson and Moffat [15]. It is
a linear-time approximation algorithm that compresses well in
practice. RePair was generalized to trees by Lohrey at al. [16].
Grammar-based compression typically produces two parts: a
set of rules and an (often large) incompressible, remaining part.

We propose a generalization of RePair compression to
graphs, to be precise, to directed edge-labeled hypergraphs.
The idea of RePair is to repeatedly replace a most frequent
digram (in a string, a digram is a pair of adjacent letters) by a
new nonterminal, until no digram occurs more than once. In
our setting, a digram consists of a pair of connected hyperedges.
Let us consider an example: Figure 1a shows a grammar with
initial graph S, and one nonterminal A, appearing three times
in S. The rule for A generates a digram – two connected edges.
We apply the rule by removing an A-edge, and inserting the
digram, so that source and target nodes of the removed edge
are merged with the source and target nodes of the digram. By
applying the A-rule three times to the start graph, we obtain
the terminal graph, which consists of three a- and b-edges as
shown in Figure 1b. RePair compression intuitively does the
reverse of the rule-application shown in Figure 1b. Starting
with the full graph, it replaces edge pairs that occur more than
once by nonterminal edges, and introduces corresponding rules.
Thus it finds the digram consisting of an a- and a b-edge three
times, and replaces each by an A-edge (introducing the A-rule).
In general, the right-hand side of a rule can have several source
and target nodes and we just speak of “external” nodes (e.g.
the black nodes in Figure 1a). A rule with k external nodes is
applied to a hyperedge with k incident nodes. It is well-known
that restricting to rules (and start graph) with at most k nodes
generates (hyper)graphs of tree-width at most k. The need to
introduce hyperedges and right-hand sides with more than two
external nodes can be outlined on a slight modification of the
graph in Figure 1b, shown in Figure 1c. It has two additional
c-edges. The most frequent digram is still the one with one
a- and one b-edge. However now the center node must be
external too. The extra two edges prohibit the center nodes
removal. Thus an A-hyperedge with three incident nodes would
replace the digram. Note that, in this example, no compression
would be achieved, because the start graph still contains all
original nodes, and because hyperedges are more expensive
than ordinary ones.

Let us now discuss some of the challenges that come up
when generalizing RePair to graphs. In each round of RePair
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Fig. 1. Examples of a graph grammar (a), a full derivation of this grammar (b), a graph incompressible with gRePair (c), and a hypergraph (d).

Fig. 2. Every possible digram using two unlabeled, undirected edges.

we need to find a digram with a maximal number of non-
overlapping occurrences (i.e., occurrences that have no edge
in common). In the classical string and tree cases of RePair,
maximal non-overlapping occurrences of a digram can be found
by simple greedy search. In the graph case, this is no longer
possible. Determining such a subset is hard: it can be obtain
from the full (overlapping) set of occurrences by maximum
matching; the most efficient algorithms for the latter (such
as “Blossom”) require O(|V |2|E|) time, which is infeasible
for large graphs. Furthermore, this is just the time required to
find such a list for one digram. As seen in Figure 2, even for
unlabeled, undirected graphs (without hyperedges) there are
already eight different digrams to be considered. To address
these challenges, we apply a greedy approximation. We follow
some given fixed order ω of nodes. For every node u of degree
k, we count the occurrences of d centered around u, in a way
that only O(k) possible digram occurrences are considered.
The chosen node order can significantly affect the compression
ratios. The main contributions of the paper are:

1) a generalization of RePair to graphs (gRePair),
2) an extensive experimental evaluation of an implemen-

tation of gRePair, and
3) a linear-time algorithm for (s, t)-reachability over

grammar-compressed graphs.

The experimental results are that gRePair improves over state-
of-the-art compressors for RDF graphs and for version graphs
(unions of similar graphs). We found that one indicator of
compression performance by our method is the number of
equivalence classes of our particular node ordering (which is a
generalization of the node degree ordering).

Related Work. Our grammar formalism is known as
context-free hyperedge replacement (HR) grammars, see [17].
An approximation algorithm for finding a small HR grammar
was considered already by Peshkin [18]. However, evaluation
was only presented for rather small protein graphs. As far as
we know, no other compressor for straight-line graph grammars

has been considered. Claude and Navarro [19] apply string
RePair on the adjacency list of a graph. This works well, but
is outperformed by newer compression schemes such as k2-
trees. There are several approaches for web graph compression.
The WebGraph framework [10] represents the adjacency list
of a graph using several layers of encodings, while retaining
the ability to answer out-neighborhood queries. A different
encoding is proposed by Grabowski and Bieniecki [20], where
contiguous blocks of the adjacency list are merged into a single
ordered list. They then use gzip to compress this list, leading
to the current state-of-the-art in compression/query trade-off,
when only out-neighborhood queries are considered. The k2-
trees of Brisaboa et al. [21] compress the adjacency matrix by
partitioning it into k2 rectangles. If one of these includes only
0-values, it is represented by a 0-leaf in the tree, otherwise the
rectangle is partitioned further. The method provides access
to both, in- and out-neighborhood queries, and can be applied
to any kind of binary relation. We use k2-trees to represent
the incompressible start graph of our grammars. The k2-tree
is used to compress RDF graphs in [8]. The k2-tree-method
was combined by Hernández and Navarro [22] with dense
substructure detection, originally proposed by Buehrer and
Chellapilla [23]. The method represents dense substructures as
bicliques and replaces the edges between the two node sets
with edges to a single “virtual node”. More database oriented
work is found for semistructured data. For example the XMill-
compressor [24] groups XML-data such that a subsequent use of
general-purpose compression (gzip) is more effective. Schema
information can improve its effectiveness, but is not required.
Deriving schema information from existing data can be seen
as a form of lossy compression. DataGuides [25] are a way of
doing just that for XML data.

II. PRELIMINARIES

A ranked alphabet consists of an alphabet Σ together with a
mapping rank : Σ→ N\{0} that assigns a rank to every symbol
in Σ. For the rest of the paper, we assume that Σ is fixed, and of
the form {1, . . . , n} for some n ∈ N. A hypergraph over Σ is a
tuple g = (V,E, att, lab, ext) where V is a set of nodes, E is a
set of edges, att : E → V ∗ is the attachment map, lab : E → Σ
is the label map, and ext ∈ V ∗ is a sequence of external nodes.
We define the rank of an edge as rank(e) = |att(e)| and require
that rank(e) = rank(lab(e)) for every edge in E. We add the
following three restrictions on hypergraphs: (1) for all edges
e ∈ E : att(e) contains no node twice, (2) ext contains no
node twice, and (3) V = {1, 2, . . . ,m} for some m; these
numbers are called node IDs. A hypergraph is simple, if (1) for
all edges e ∈ E: |att(e)| = 2 and (2) no two distinct edges
e1, e2 ∈ E exist such that att(e1) = att(e2) and lab(e1) =
lab(e2). For a hypergraph g = (V,E, att, lab, ext) we use



Vg, Eg, attg, labg , and extg to refer to its components. We may
omit the subscript if the hypergraph is clear from context. The
rank of a hypergraph g is defined as rank(g) = |extg|. Nodes
that are not external are called internal. We define the node
size of g as |g|V = |V |, the edge size as |g|E = |{e ∈ Eg |
rank(e) ≤ 2}| +

∑
e∈Eg,rank(e)>2 rank(e), and the total size

|g| = |g|V + |g|E . We denote the set of all hypergraphs over Σ
by HGR(Σ). For sequences w = x1x2 · · ·xn we write xi ∈ w
to express that xi is part of the sequence w. We also assume that
the node IDs may represent arbitrary data values. Let D be a
set of data values, then for every hypergraph, there is a mapping
ϕ : V → D assigning values to nodes. We provide an example
in Figure 1d. Formally, the pictured graph is V = {1, 2, 3},
E = {e1, e2, e3}, att = {e1 7→ 1 · 2, e2 7→ 2 · 3, e3 7→ 2 · 1 · 3},
lab = {e1 7→ a, e2 7→ b, e3 7→ A}, and ext = ε. Note that
we omit the indices describing the order in which the nodes
are attached to a hyperedge in the following. Instead, we use
colors to indicate this order.

The next definition is a variant of context-free hyperedge
replacement grammars, see, e.g. [17].

Definition 1. A hyperedge replacement grammar (HR gram-
mar) over Σ is a tuple G = (N,P, S), where N is a ranked al-
phabet of nonterminals with N∩Σ = ∅, P ⊂ N×HGR(Σ∪N)
is the set of rules such that rank(A) = rank(g) for every
(A, g) ∈ P , and S ∈ HGR(Σ ∪N) is the start graph.

In the literature (such as [17]), our restrictions (1) − (3)
on hypergraphs (see above) are not present. It is not difficult
to show that these restrictions have no impact with respect to
compression. The size of G is defined as |G| :=

∑
(A,g)∈P |g|,

and similarly the edge and node sizes: |G|E :=
∑

(A,g)∈P |g|E
and |G|V :=

∑
(A,g)∈P |g|V . We often write p : A → g for

a rule p = (A, g) and call A the left-hand side and g the
right-hand side rhs(p) of p. We call symbols in Σ terminals.
Consequently an edge is called terminal if it is labeled by a
terminal and nonterminal otherwise. To derive a nonterminal
edge e using a rule A→ h in a graph g we remove e from g,
add a disjoint copy h to g and merge the ith external node of
h with the ith node of attg(e). For an example of a derivation,
see Figure 1.

An HR grammar G is called straight-line (SL-HR grammar)
if (1) the relation ≤NT= {(A1, A2) | ∃g : (A1, g) ∈ P,∃e ∈
Eg : lab(e) = A2} is acyclic and (2) for every nonterminal
A ∈ N there exists exactly one rule (A, g) ∈ P . Note that
SL-HR grammars always derive exactly one hypergraph (up
to isomorphism). As the right-hand side for a nonterminal is
unique in SL-HR grammars, we denote the right-hand side
of p = (A, g) by rhs(A). The height of an SL-HR grammar
height(G) is the height of ≤NT. We now present a method
to assign precise node IDs by imposing an order on the
nonterminal edges. We use numbers from 1 to m = |VS |
for the node IDs in the start graph. Now let the nonterminal
edges be ordered. Then, when applying the rules in this order,
we assign the next available IDs m+ 1, m+ 2,. . . to the nodes
created in the hypergraph, in the same order as they are given
in the right-hand side of the rule. Doing so yields a unique
hypergraph out of the many isomorphic options in L(G). We
denote this hypergraph by val(G). We denote the hypergraph
derived by a single edge e in this way by val(e).

In the following we often say grammar instead of SL-HR
grammar and graph instead of hypergraph.

III. GRAPHREPAIR

We present a generalization to graphs of the RePair
compression scheme. Let us first explain the classical RePair
compressor for strings and trees. Consider as an example the
string abcabcabc: it contains occurrences of the digrams ab (3
times), bc (3 times), and ca (2 times). If ab is replaced by A
then we obtain AcAcAc. In the next step Ac is replaced by B,
to obtain this grammar {S → BBB,B → Ac,A → ab}. To
compute in linear time such a grammar from a given string
requires a set of carefully designed data structures. The input
string is represented as a doubly linked list. Additionally a
list of active digrams (digrams that occur at least twice) is
maintained. Every entry in the list of active digrams points to
an entry in a priority queue PQ of size

√
n (with n being the

size of the input string) containing doubly linked lists. The list
with priority i in PQ contains every digram that occurs i times,
the last list contains every digram occurring

√
n or more times.

The list items also contain links to the first occurrence of the
respective digram. This queue is used to find the most frequent
digram in constant time. Larsson and Moffat [15] proved that√
n-length guarantees constant time. All these data structures

are updated whenever an occurrence is removed. Consider
removing one occurrence of ab in the example above: when
doing so, one occurrence of bc and possibly ac needs to be
removed from the list. On the other hand, the new occurrences
of Ac and possibly cA are created.

An even smaller grammar than the one above can be
obtained through pruning, which removes nonterminals that are
referenced only once, i.e., the B-rule becomes B → abc. On
trees, a digram consists of a node and one of its children. Such
a digram has, in a binary tree, at most three “dangling edges”.
Dangling edges in context-free tree grammars are represented
by parameters of the form y1, . . . , yk. The number k is the
rank of the rule (digram). E.g. the A-rule in Figure 3 represents
a digram of rank 1, while the B-rule represents a digram of
rank 3. Keeping the rank small is desirable as it impacts further
algorithms on the grammar [26]. Therefore, TreeRePair has a
user-defined “maxRank” parameter.

Definition 2. A digram over Σ is a hypergraph d ∈ HGR(Σ),
with Ed = {e1, e2} such that (1) for all v ∈ Vd, v ∈ attd(e1)
or v ∈ attd(e2), and (2) there exists a v ∈ Vd such that
v ∈ attd(e1) and v ∈ attd(e2).

Every possible digram over undirected, unlabeled edges is
shown in Figure 2. As a further example, the right-hand sides
of the two A rules in Figure 4 are digrams. Note that both
grammars in the figure generate the graph on the left. However,
they differ in size: the grammar in the middle has size 12,
while the grammar on the right has size 9 (recall that simple
edges have size 1, even if they are nonterminal).

A. The Algorithm

As mentioned before, RePair replaces a digram that has the
largest number of non-overlapping occurrences.

Definition 3. Let g, d ∈ HGR(Σ) such that d is a digram. Let
ed1, e

d
2 be the two edges of d. Let o = {e1, e2} ⊆ Eg and let
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Fig. 3. Different digrams TreeRePair considers in a tree and their replacement
rules.

Vo be the set of nodes incident with edges in o. Then o is
an occurrence of d in g, if there is a bijection ψ : Vo → Vd
such that for i ∈ {1, 2} (1) ψ(v) ∈ attd(edi ) if and only if
v ∈ attg(ei), (2) labd(edi ) = labg(ei) and (3) ψ(v) ∈ extd if
and only if there exists an edge e ∈ Eg with e 6= e1, e 6= e2

and v ∈ attg(e).

The first two conditions of this definition ensure that the two
edges of an occurrence induce a graph isomorphic to d. The
third condition requires that every external node of d is mapped
to a node in g that is incident with other edges. Thus, the edges
marked in the graph on the left of Figure 4 are an occurrence
of the digram in the right grammar, but not an occurrence of
the digram in the middle grammar. We call the nodes in Vo that
are mapped to external nodes of d, attachment nodes of o, and
the ones mapped to internal nodes, removal nodes of o. Two
occurrences o1, o2 of the same digram d are called overlapping
if o1 ∩ o2 6= ∅. Otherwise they are non-overlapping. If there
are at least two non-overlapping occurrences of d in a graph
g, we call d an active digram.

Let X be a symbol of rank k and d a digram of rank k. The
replacement of an occurrence o of d in g by X is the graph
obtained from g by removing the edges in o from g, removing
the removal nodes of o, and adding an edge labeled X that
is attached to the attachment nodes of o, in such a way that
applying the rule X → d yields the original graph. Consider
again Figure 4: the start graph of the right grammar is the
replacement of the shaded occurrence of d in the left graph by
A (where d is rhs(A) of the grammar on the right).

Given a graph g gRePair performs these steps:

1) Let G = (N,P, S) be a grammar with N = P = ∅
and S = g.

2) Determine a list of non-overlapping occurrences for
every digram appearing in g.

3) Select a most frequent digram d.
4) Let A be a fresh nonterminal of rank rank(d). Replace

every occurrence o of d in S by an A-edge.
5) Let N = N ∪ {A} and P = P ∪ {A→ d}.
6) Update the occurrence lists.
7) If there are active digrams in S: repeat from Step 3.
8) Prune the grammar.

As an additional step after Step 3 finishes, we connect the
disconnected components of the graph by virtual edges and run
the algorithm again before pruning (and then remove the virtual
edges from the grammar). This improves the compression on

graphs with disconnected components. We provide more details
on Steps 2, 6, and 8.

1) Counting occurrences: (Step 2) We aim to find a set
of non-overlapping occurrences for every digram that occurs
in g, that is of maximal size. As stated in the Introduction,
the most efficient way of doing this we are aware of needs
O(|V |2|E|) time. Thus we approximate. Let ω be an order on
the nodes of g. We traverse the nodes of g in this order, and
at every node iterate through occurrences centered around this
node. The node order ω heavily influences the compression
behavior. Consider the graph in Figure 5. We want to find
the non-overlapping occurrences of the digram in Figure 5d.
Note that all three nodes are external, but their order is not
important in this example. Figure 5a shows the non-overlapping
occurrences found if we start in the central node of the graph.
Using the DFS-type order starting at a different node given by
the numbers in Figure 5b, three occurrences are determined.
Using the “jumping” order in Figure 5c, a maximum set of
four non-overlapping occurrences is found. Note that for strings
and trees, maximum sets of non-overlapping occurrences can
be obtained by simple orders (namely, left-to-right and post
order), and straightforwardly assigning occurrences in a greedy
way. Implementation details of this step are explained in
Section III-C1.

2) Updating occurrence lists: (Step 6) Let o be an occur-
rence of d that is being replaced and let F be the set of edges
in g that are incident with the attachment nodes of o. Removing
o from the graph can only affect the occurrence lists of digrams
that have occurrences using edges in F . In particular, for the
two edges in o (e1 and e2) reduce the count of every digram
by one for which {ei, e} (i ∈ {1, 2}, e ∈ F ) appears in an
existing occurrence list. After the replacement let e′ be the new
A-labeled nonterminal edge in g. Then every pair of edges
{e′, e}, e ∈ F is an occurrence of a digram, and is thus inserted
into the appropriate occurrence list. The last step has again
complexity issues. Let k be the sum of degrees of all attachment
nodes of o. Then there are O(k) pairs of edges to be considered
as occurrences with the new nonterminal edge. This is not a
problem in itself, but consider the following situation: let there
be an attachment node v with degree k. Further, let every one
of the k edges around v be part of a distinct occurrence of the
digram d being replaced. As explained, when replacing one
of these occurrences, the other k − 1 edges are considered as
occurrences with the new nonterminal. Now however, when
replacing the next one, the remaining k − 2 edges have to be
considered again. Thus, during all the replacement steps, we
would again need to consider O(k2) occurrences. Therefore this
update needs to be done in constant time. See Section III-C1
for details how we solved this issue.

3) Pruning: (Step 8) This phase removes every rule from
the grammar that does not contribute to the compression.
For a nonterminal A of rank n we define handle(A) =
({v1, . . . , vn}, {e}, lab(e) = A, att(e) = v1 · · · vn, ext =
v1 · · · vn), as a minimal graph with a nonterminal A-edge.
The size of handle(A) is precisely the size a nonterminal edge
adds to a graph. We then define the contribution of A as

con(A) = |ref(A)| · (|rhs(A)| − |handle(A)|)− |rhs(A)|,

where ref(A) = |{e ∈ ES | lab(e) = A}| +
∑
B∈N |{e ∈

Erhs(B) | lab(e) = A}| is the number of edges labeled A in the
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Fig. 5. Three different traversals visiting the nodes in the numbered order to find occurrences of the digram given in (d). The occurrences found for each
traversal are marked by differently colored boxes.
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Fig. 6. Example of a hyperedge replacement grammar.

123

10 412 5

6 7

1389 11

Fig. 7. Unique result of the derivation of the grammar in Figure 6 when
ordering the nonterminal edges from left to right.

grammar. The contribution of A counts by how much the size
of the grammar changes when every instance of the nonterminal
is derived, i.e., it measures how much A contributes towards
compression. If con(A) > 0 then we say that A contributes
towards compression. The grammar in Figure 6represents the
graph of Figures 5a–5c. Here, the A-rule has con(A) = 4 · (5−
3)− 5 = 3 and thus contributes to the compression. The reader
may verify that the sizes of this grammar and the graph (given
in Figure 7, with the IDs assigned as explained at the end of
Section II ordering the nonterminals from “left” to “right”)
differ by exactly three. Note that we cannot just remove every
rule with a contribution of 0 or less: as we remove rules, the
contribution of other nonterminals might change as edges are
added or deleted.

The effectiveness of pruning depends on the order in which
the nonterminals are considered. Finding an optimal order is a
complex optimization problem as mentioned in [16, Section 3.2].
For TreeRePair, a bottom-up hierarchical order works well in
practice. We use a similar approach. First every nonterminal
A with ref(A) = 1 is removed, because, by definition, they do
not contribute towards compression. To remove A we apply
its rule to each A-edge in the grammar and remove the A-rule.

Then we traverse the nonterminals in bottom-up ≤NT-order (see
Preliminaries), removing each nonterminal with con(A) ≤ 0.

B. Important Parameters

In this section we describe some parameters of our algorithm
that influence the compression ratio. Their effect is evaluated
experimentally in Section IV.

1) Node order: The node order strongly influences the
digram counting. As we cannot guarantee to find a maximal
set of non-overlapping occurrences for every digram, the node
order becomes the main factor in the quality of this set. We
evaluate these orders: natural order uses the node IDs as given,
BFS order follows a breadth-first traversal, and FP computes
a fixpoint on the node neighborhoods starting from the degrees
(as a fourth order, we consider FP0, which is a degree order):

For a graph g let ci : Vg → N be a family of functions that
color every node with an integer. We first define c0(v) = d(v),
where d(v) is the degree of v. Now map every node v to the
tuple f0(v) = (c0(v), c0(v1), . . . , c0(vn)), where v1, . . . , vn
are the neighbors of v ordered by their values in c0. Sort
these tuples lexicographically and let c1(v) be the position of
f0(v) in this lexicographical order. This process is iterated until
ci+1 = ci. Now ci implies an order of the nodes by defining
v < u iff ci(v) < ci(u). This computation of the order works
for undirected, unlabeled graphs, but can be straightforwardly
extended to directed labeled graphs. We call this order FP.
Figure 8 shows an example of the FP-order. The graph on the
left is annotated by c0, the graph in the middle shows f0, which
is then ordered lexicographically to get c1 on the right. This
is the fixpoint for this graph. Note that it is not necessarily
total and thus also implies an equivalence relation on the nodes
(v ∼=FP u iff ci(v) = ci(u)). The number of equivalence classes
of ∼=FP has an interesting correlation with the compression ratio,
as discussed in Section IV-B2.

2) Maximum rank: This specifies the maximal rank of a
digram (and thus the maximal rank of a nonterminal edge) the
compressor considers. Digrams with a higher rank are ignored
and not counted. It was shown already for TreeRePair [16] that



1 1

3

21

(1, 3) (1, 3)

(3, 1, 1, 2)

(2, 1, 3)(1, 2)

2 2

4

31

c0 ⇒ f0 f0 ⇒ c1

Fig. 8. Computing the FP-order of a small graph.

choosing this parameter too high or too small can have strong
effects on compression (in both directions).

C. Implementation Details

In this section we describe some of the technical details of
our implementation. We outline occurrence counting and the
involved data structures, and describe our output format.

1) Compression: We focus on the first phase in this section,
because the implementation of the pruning phase is straight-
forward. There are two details we want to discuss. The first
one is the counting of occurrences centered around a node v.
As mentioned in the previous section, there are O(k2) possible
edge pairs to consider, if k is the degree of v, but we want to
only consider O(k) many. The second one is the data structure
used to maintain occurrences and allowing for quick updates.

Occurrence lists: Consider first the case of a graph
without edge labels and directions. Let node v have degree k,
i.e., there are O(k2) edge pairs that are occurrences of some
digram. But, after inserting one of them into the occurrence
list, we effectively take the two edges involved out of further
consideration, because every other occurrence using one of them
would overlap with this one. Let E be the edges incident with
v that have not been counted as occurrences yet. We partition
E into two sets E1 = {e1, . . . , en} and E2 = {f1, . . . , fm}
where m−n ∈ {0, 1}. We then add Occ(E1, E2) = {{ei, fi} |
1 ≤ i ≤ n} as the O(k) occurrences around v to the list. Note
that only if all occurrences around v are occurrences of the
same digram, this procedure guarantees to produce a maximum
non-overlapping set of occurrences around v.

From here, adding labels (or directions, which can be
viewed as labels) is straightforward. For two labels σ1 and
σ2 let Eσ1,σ2(v) be the set of edges incident with v labeled
σ1 and not yet counted in an occurrence with an edge
labeled σ2. Then for distinct symbols σ1 and σ2 count the
occurrences Occ(Eσ1,σ2(v), Eσ2,σ1(v)) and for every σ count
the occurrences where both edges have the same symbol by
splitting Eσ,σ(v) as above. This takes O(|Σ|2) time, but we
expect |Σ| to be comparatively small, so this is not an issue.

A similar situation arises when updating the occurrence list
after removing an occurrence. As mentioned in Section III-A2,
after inserting the new nonterminal edge e′ we need to select
an edge e from the set of neighboring edges F in constant
time. Our implementation does this by storing a list of available
edges for every combination of edge labels attached to every
node of the graph. For every edge label the first edge e in the
respective list is selected to create the occurrence {e′, e}. This
takes O(|Σ|) time.

Data Structures: Our data structures are a direct gener-
alization to graphs of the data structures used for strings [15]
and trees [16, Figure 11]. The occurrences are managed using
doubly linked lists for every active digram. Of importance is a
priority queue, which uses the frequency of a digram as the
priority. Following Larsson and Moffat [15] the length of this
queue is chosen as

√
n, where n = |E|.

2) Grammar Representation: We encode the start graph
and the productions in different ways. As an example, consider
again the grammar in Figure 6. The start graph is encoded
using k2-trees [21], using k = 2 as this provides the best
compression. This data structure partitions the adjacency matrix
into k2 squares and represents it in a k2-ary tree. Consider
the left adjacency matrix in Figure 9. The 9× 9-matrix is first
expanded with 0-values to the next power of two; i.e., 16× 16.
If one partition has only 0-entries, a leaf labeled 0 is added
to the tree. This happens for the 3rd and 4th partition in this
case (the partitions are numbered left to right, top to bottom).
Thus the 3rd and 4th child of the root are 0-leafs. The other
two have at least one 1-entry, therefore inner nodes labeled 1
are added and the square is again partitioned into k2 squares.
This is continued at most until every square covers exactly one
value. At this point the values are added to the tree as leafs. As
we need to consider edges with different labels, we also use a
method similar to the representation of RDF graphs proposed
in [8]. Let Eσ ⊆ E be the set of all edges labeled σ. For
every label σ appearing in S we encode the subgraph (V,Eσ).
If rank(σ) = 2, then this is encoded as an adjacency matrix,
otherwise we use an incidence matrix. The resulting matrices
are encoded as k2-trees. Figure 9 is an example with two edge
labels. Note that this example only uses edges of rank 2. For
a hyperedge e, the incidence matrix only provides information
on the set of nodes attached to e, but not the specific order of
att(e). For this reason we also store a permutation for every
edge to recover att(e). We count the number of distinct such
permutations appearing in the grammar and assign a number to
each. Then we store the list encoded in a dlog ne-fixed length
encoding, where n is the number of distinct permutations.

For the productions we use a different format, as we expect
the right-hand-sides to be very small graphs. We store an edge
list for every production, encoding the nodes using a variable-
length δ-code [27]. One more bit per node is used to mark
external nodes. As the order of the external nodes is also
important, we make sure that the order induced by the IDs
of the external nodes is the same as the order of the external
nodes. Furthermore, due to the pruning step, productions can
have more than two edges, so every production begins with
the edge count (again, using δ-codes). For every edge we first
use one bit to mark terminal/nonterminal edges, then store the
number of attached nodes, followed by the δ-codes of the list
of IDs. Finally, we also use a δ-code for the edge label. For
the production in Figure 6 this leads to the following encoding:

δ(2) two edges
0δ(2) edge is terminal (0), has two nodes
1δ(1)1δ(2)δ(1) nodes 1 (external) and 2 (external), label 1
0δ(2) next edge is terminal, has two nodes
1δ(1)0δ(3)δ(1) nodes 1 (external) and 3 (internal), label 1

This is a bit sequence of length 28.
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Fig. 9. Start graph (middle): terminal edges (left) and nonterminal edges (right) and their k2-tree representations (below) with k = 2.

Note that the grammar only produces an isomorphic copy of
the original graph. We can, however, produce a mapping from
the new node IDs to the original ones, as it always produces the
same isomorphic copy. This can be used to create a mapping
ψ′ : Vval(G) → D, such that the grammar represents the same
data as the original graph.

IV. EXPERIMENTAL RESULTS

We implemented a prototype in Scala (version 2.11.7) using
the Graph for Scala library1 (version 1.9.4). The experiments
are conducted on a machine running Scientific Linux 6.6 (kernel
version 2.6.32), with 2 Intel Xeon E5-2690 v2 processors at
3.00 GHz and 378 GB memory. As we are only evaluating
a prototype, we do not mention runtime or peak memory
performance, as these can be improved by a more careful
implementation. We compare to the following compressors:

• k2-tree, for which we use our own Scala-
implementation following the description in [21],
using the same binary format.

• The list merge (LM) algorithm by Grabowski and Bie-
niecki [20]. We use 64 for their chunk size parameter,
as in their paper.

• The combination of dense substructure removal [23]
with k2-tree by Hernández and Navarro [22] (HN).
For the parameters to the algorithm we use T = 10,
P = 2, and ES = 10, which are the paremeters their
experiments show to provide the best compression.

The latter two implementations were provided by their authors.
We also experimented with RePair on adjacency lists by Claude
and Navarro [19], but omit the results here, because the

1http://www.scala-graph.org/

TABLE I. NETWORK GRAPHS

Graph |V | |E| |[∼=FP]|
CA-AstroPh 18,772 396,160 14,742
CA-CondMat 23,133 186,936 17,135
CA-GrQc 5,242 28,980 3,394
Email-Enron 36,692 367,662 5,805
Email-EuAll 265,214 420,045 28,895
NotreDame 325,729 1,497,134 118,264
Wiki-Talk 2,394,385 5,021,410 566,846
Wiki-Vote 7,115 103,689 5,806

compression performance generally was superseded by another
compared method.

As common in graph compression, we present the com-
pression ratios in bpe (bits per edge). Note that our results
are not perfectly comparable, as we do not include the space
required to retain the original node IDs. However, in particular
for RDF we do not consider this a limitation, as explained in
Section IV-C2.

A. Datasets

We use three different types of graphs: network graphs
(Table I), RDF graphs (Table II), and version graphs (Table III).
Every table lists the numbers of nodes and edges for each
graph and the number of equivalence classes of ∼=FP (see
Section III-B1). For RDF graphs we also list how many distinct
edge labels (i.e., predicates) the data set uses. Two of the version
graphs also have labeled edges. We give a short description of
every graph used: the network graphs are from the Stanford
Large Network Dataset Collection2 and are unlabeled. They
are communication networks (Email-EuAll, Wiki-Vote, Wiki-
Talk), a web graph (NotreDame) and Co-Authorship networks

2http://snap.stanford.edu/data/index.html



TABLE II. RDF GRAPHS

Graph |V | |E| |Σ| |[∼=FP]|
1 Specific properties en 609,014 819,764 71 236,235
2 Types ru 642,340 642,364 1 79
3 Types es 818,657 819,780 1 336
4 Types de with en 618,708 1,810,909 1 335
5 Identica 16,355 29,683 12 14,588
6 Jamendo 438,975 1,047,898 25 396,725

TABLE III. VERSION GRAPHS

Graph |V | |E| |Σ| |[∼=FP]|
Tic-Tac-Toe 5,634 10,016 3 9
Chess 76,272 113,039 12 74,592
DBLP60-70 24,246 23,677 1 2,739
DBLP60-90 658,197 954,521 1 207,305

(CA-AstroPh, CA-CondMat, CA-GrQc). Even if they were
advertised as undirected, we considered all of them to be lists
of directed edges, to improve the comparability with other
methods.

The RDF graphs we use mostly come from the DBPedia
project3, which is an effort of representing ontology information
from Wikipedia. We use specific mapping-based properties (En-
glish), which contains infobox data from the English Wikipedia
and mapping-based types, which contains the rdf:types for the
instances extracted from the infobox data. We use three different
versions of the latter: types for instances extracted from the
Spanish and Russian Wikipedia pages that do not have an
equivalent English page, and types for instances extracted from
the German Wikipedia pages that do have an equivalent English
page. The Identica-dataset4 represents messages from the public
stream of the microblogging site identi.ca. Its triples map a
notice or user with predicates such as creator (pointing to a user),
date, content, or name. The Jamendo-dataset5 is a linked-data
representation of the Jamendo-repository for Creative Commons
licensed music. Subjects are artists, records, tags, tracks, signals,
or albums. The triples connect them with metadata such as
names, birthdate, biography, or date.

Version graphs are disjoint unions of multiple versions of the
same graph. Here, Tic-Tac-Toe represents winning positions,
Chess the legal moves in the respective games6. The files
contain node labels from a finite alphabet, which we ignore
here. DBLP60-70 and DBLP60-90 are co-authorship networks
from DBLP, created from the XML7 file by using author IDs as
nodes and creating an edge between two authors who appear as
co-authors of some entry in the file. To make version graphs, we
created graphs containing the disjoint union of yearly snapshots
of the co-authorship network.

B. Influence of Parameters

We evaluate how the different parameters for our compressor
affect compression. For these experiments every parameter
except the one evaluated is fixed for the runs. Note that
this sometimes leads to situations where none of the results

3http://wiki.dbpedia.org/Downloads2015-04
4http://www.it.uc3m.es/berto/RDSZ/
5http://dbtune.org/jamendo/
6Both from http://learnlab.uta.edu/old_site/subdue/index.html
7http://dblp.uni-trier.de/xml/ (release from August 1st, 2015)

TABLE IV. RESULTS FOR DIFFERENT VALUES OF MAXRANK
(COMPRESSION IN BPE).

2 3 4 5 6 7 8

Email-EuAll 6.66 6.69 6.42 7.07 7.33 7.55 7.36
NotreDame 4.84 4.90 5.19 5.14 6.13 7.10 6.69
CA-AstroPh 16.94 16.75 16.77 16.75 17.44 19.42 18.36
CA-CondMat 18.82 17.73 17.40 18.47 18.84 20.26 19.83
CA-GrQc 13.65 13.31 13.20 14.30 14.91 15.04 14.93
Email-Enron 10.21 10.74 10.28 10.79 11.62 13.29 11.53

in a particular experiment represents the best compression
our compressor is able to achieve for the given graph. The
parameters evaluated are the maximum rank of a nonterminal
and the node order.

1) Maximum Rank: We tested maxRank values from 2 up
to 8, the results of a subset of six graphs are given in Table IV,
as compression in bpe. We did some tests for higher values (up
to 16) but only got worse results. We did not evaluate values
higher than 16. The best results are marked in bold. In most
cases the best result was either achieved with a setting of 2 or
with a value of 4. Even in the cases where a maximal rank of 4
does not yield the best result, the difference is less than 1 bpe.
We therefore conclude that a value of 4 is a good compromise
for our data set.

2) Node Order: Recall from Section III-B1 that the FP-order
is a fixed point computation starting from the node degrees. As
this is an iterative process, it can be terminated at any point.
We were interested how much difference finding a fixpoint
makes compared to using just the node degrees (which we call
FP0). Figure 10 shows the compression ratio of a selection of
graphs under the different node orders. The selection aims to
be representative for the graphs of the types we evaluated: CA-
graphs behave similar to CA-AstroPh, version graphs similar to
DBLP60-70, and the RDF graphs similar to Specific properties
en. The other graphs in the figure are chosen because they are
outliers in their respective category. Our FP-order achieves the
best result on most of the graphs, but the different orders tend
to only have surprisingly little impact. On RDF graphs the
order generally had only marginal impact: the best and worst
results usually are within 0.5 bpe of each other. The Jamendo
graph presents an exception here, with the natural order being
about 1 bpe better than the closest other result. Version graphs
however benefit hugely from the FP-order. This shows that two
or more versions of the same graph are similarly ordered in
the FP-order, increasing the likelihood of the compressor of
recognizing repeating structures.

There is another interesting observation about the FP-order,
or in particular the equivalence relation ∼=FP. It is likely that
isomorphic nodes are equivalent in this relation. This implies
that graphs with a low number of equivalence classes should
compress well, as they would have many repeating substructures.
Figure 11 shows this correlation. There is no graph in the
lower right corner, i.e., there is no graph with a low number
of equivalence classes and bad compression.

C. Comparison with other Compressors

We compare gRePair with several other compressors. Note
that we compare RDF graph compression only against the
k2-tree-method, as LM and HN have not been extended to



Fig. 10. Performance of gRePair under different node orders.

Fig. 11. Correlation between equivalence classes of ∼=FP and compression.

RDF graphs. While these algorithms all work as in-memory
data structures, they produce outputs with file sizes comparable
to the in-memory representation. We therefore measure the
compression performance based on the file size. We also want
to give an idea of the compression ratio for the graphs according
to our size definition. On average we achieve a compression
ratio ( |G||g| ) of 68% for network graphs, 35% for RDF, and 24%
for version graphs. The parameters we choose for gRePair are
maxRank = 4 and the FP-order, both being generally the best,
or close to the best, choice for our dataset. We note first that
in most results the majority of the file size of gRePairs output
(> 90%) is for the k2-tree representation of the start graph.

1) Network Graphs: Our results on network graphs com-
pared to k2-tree, LM, and HN are summarized in Figure 12.
We improve on the plain k2-tree-representation on all graphs
but NotreDame. However, our results are generally worse than
LM and HN, with Email-EuAll and CA-GrQc being the only
exceptions. That being said, the HN-method can be combined
with our compressor, using their dense substructure removal
as a preprocessing step. This combination then achieves the
smallest bpe-values for the three CA-graphs.

2) RDF Graphs: The RDF format lists triples (s, p, o) of
subject, predicate, and object. These can be URIs or other
values, but in any case they tend to be big. A common practice
(see e.g. [8], [28], [29]) is to map the possible values to integers
using a dictionary and represent the graph using triples of
integers. A triple (s, p, o) then represents an edge from s to
o labeled p. As in this way dictionary and graph are separate
entities, we only focus on compressing the graph. Any method
for dictionary compression can be used to additionally compress

Fig. 12. Network graph comparison of gRePair with three other compressors.

TABLE V. RESULTS ON RDF GRAPHS (SIZE IN KB)

1 2 3 4 5 6

gRePair 1,271 1 3 267 30 872
k2-tree 2,731 590 938 1,119 52 988

the dictionary (e.g. [29]). In our comparison with k2-trees
we therefore omit the space necessary for the dictionary in
both cases. Also note that we can easily reorder the dictionary,
making RDF graphs a case where recovering only an isomorphic
copy is no limitation.

The way of extending the k2-tree-method to compress RDF
graphs is similar to our way of encoding the start graph:
one adjacency matrix is created for every edge label and
then encoded as a separate k2-tree. This was shown to be
effective in [8], where they compare to four other RDF graph
representations and achieve smaller representations than these.

Our results in comparison to k2-tree are given in Table V.
We greatly improve on the representation. Occasionally (for
the instance types graphs in particular) we are able to produce
a representation that is orders of magnitude smaller than the
k2-tree-representation. For these two graphs in particular, this
is due to the majority of their nodes being laid out in a star
pattern: few hub nodes of very high degree are connected to
nodes, most of which are only connected to the hub node.
Structures like these are compressed well by gRePair.

3) Version Graphs: We describe several experiments over
version graphs. First we study how the compressor behaves
given a high number of identical copies of the same simple
graph. The graph in this case is a directed circle with four nodes
and one of the two possible diagonal edges. Figure 13 shows
the results of this experiment for identical copies starting from
8 going in powers of 2 up to 4096. Clearly, gRePair is able to
compress much better in this case (“exponential compression”),
while the file size of other methods rises with roughly the same
gradient as the size of the graph. Note that both axes in this
graph use a logarithmic scale: in this case, gRePair produces a
representation that is orders of magnitude smaller.

Except for identical copies of rather simple graphs, however,
we cannot expect to achieve exponential compression on version
graphs. This only works, if gRePair consistently compresses
the same (i.e., isomorphic) substructures in the same way.
Our FP-ordering approximates a test for isomorphism, but of
course cannot achieve this for large graphs. Figure 14 shows a
comparison on the compression of a version graph from the



TABLE VI. RESULTS ON VERSION GRAPHS (COMPRESSION IN BPE)

TTT Chess DBLP60-70 DBLP60-90

gRePair 0.12 9.06 9.54 13.39
k2-tree 9.62 13.10 15.78 20.80
LM - - 16.44 19.32
HN - - 16.65 18.26

Fig. 13. Compression of disjoint unions of the same synthetic graph with 4
nodes and 5 edges.

Fig. 14. Using different node orders for the compression of a version graph
(yearly snapshots of the DBLP co-authorship network from 1960 to 1970).

DBLP co-authorship network. We started with a co-authorship
network including publications from 1960 and older. To this
graph we then add versions with the publications from 1961,
1962,. . . until 1970 and compress the graphs obtained in this
way. The comparison shows that, using the FP-ordering, our
method achieves better compression than using other orders.
Note that the results for BFS or random ordering are much
closer to k2-trees. Our full results for version graphs are given
in Table VI. Note that we compare Tic-Tac-Toe and Chess
only against k2-tree, because these graphs have edge labels.
The results show that gRePair compresses version graphs well.
Recall, that TTT and Chess are not compared against LM/HN,
because these graphs have edge labels.

V. QUERY EVALUATION

In this section we discuss two types of queries that can be
performed over SL-HR grammars: neighborhood queries and
speed-up queries. Neighborhood queries allow to traverse the
edges of a graph (in any direction). Using them, any arbitrary
graph algorithm can be performed on the compressed represen-
tation given by an SL-HR grammar. However, this comes at a
price: a considerable slow-down is to be expected in comparison
to running over an uncompressed graph representation. In
contrast, speed-up queries, as their name suggests, can run

faster on an SL-HR grammar than on an uncompressed graph
representation. Examples of speed-up queries are counting
the number of connected components of the graph, checking
regular path properties in the graph, or checking reachability
between two nodes. These queries can be evaluated in one pass
through the grammar, and hence allow speed-ups proportional
to the compression ratio. Strictly speaking, these queries take
time quadratic in the size of the grammar (see Proposition 5).
Therefore we present a true linear time (in |G|) algorithm for
reachability queries.

The results in this section have not been implemented. Over
grammar-compressed trees, the performance of simple speed-up
queries is evaluated in [30].

Neighborhood Queries: First, we define some necessary
terms for neighborhood: For a node v ∈ Vg of a hypergraph
g we denote by N(v) = {u ∈ Vg | ∃e ∈ Eg : v ∈ attg(e) and
u ∈ attg(e)} the neighborhood of v. For simple graphs we
also define N+(v) = {u ∈ Vg | ∃e ∈ Eg : att(e) = uv} and
N−(v) = {u ∈ Vg | ∃e ∈ Eg : att(e) = vu}, the incoming
and outgoing neighborhoods of v, respectively. Furthermore we
let E(v) = {e ∈ Eg | v ∈ att(e)} be the set of edges incident
with v.

Let G = (N,P, S) be an SL-HR grammar. We assume that
every right-hand side in P contains at most two nonterminal
edges. Recall that the nodes in the start graph S are numbered
1, ..,m, and that there is an order on the nonterminal edges
e1, . . . , e` in S so that the nodes in g1 = val(e1) are numbered
m+ 1, . . . ,m+ v1, where v1 = |g1|V ), and similarly, nodes in
gi = val(ei) are numbered from k = m+

∑i−1
j=1 vj to k + vi.

Given a node ID, i.e., a number in k ∈ {1, . . . , |val(G)|V },
computing its incoming neighbors consists of two steps:
(1) compute a grammar representation (G-representation) of k,
i.e, a path in the derivation tree of G that “derives the node k”.
Such a path is of the form wv where w is a, possibly empty,
string of the form e0e1 · · · en. If w is empty, then v must be a
node in S. If not, then e0 is a nonterminal edge of S. If A1

is the label of e0, then e1 is a nonterminal edge in rhs(A1)
labeled A2, etc. Finally, v is an internal node in rhs(An). Let `
be the number of nonterminal edges in S and h = height(G).
The G-representation of k can be computed in O(log(`) + h)
time by first doing a binary search on the nonterminal edges
in S, and then following the correct nonterminal edges in the
right-hand sides of rules until the node is reached. (2) Given
the G-representation e0e1 · · · env, the incoming neighbors are
computed as follows. We return every internal node u in
rhs(An) that has an edge to v. For every external node u
in rhs(An) that has an edge to v, we need to compute its node
ID, which is done by calling the method getID(e0e1 · · · enu).
Clearly, this is done in O(h) time. For every nonterminal edge
e in rhs(An) that has an attachment to v, i.e., v appears in
att(e) at some position p, we compute the node IDs of all
terminal nodes produced by A (the label of e) and having
an edge to the pth external node. We use a recursive method
getNeighboring(e, p) which returns the set of node IDs that are
neighbors to the pth external node within the subgraph derived
from e. To do so, iterate over the edges incident with the pth
external node. Let e′ be the current edge. If e′ is terminal and
attached to an internal node, add the internal nodes ID to the
result set. If it is terminal and attached to another external
node w, we add the ID obtained by getID(e0e1 · · · enew) to



the result set. If the edge is nonterminal, let p′ be the position
of the pth external node in att(e′) and add the result of
getNeighboring(e′, p′) to the result set. The runtime is O(h)
per node, and thus a total of O(nh), where n is the number
of neighbors.

Proposition 4. Let G be an SL-HR grammar and k a node
ID, i.e., k ∈ {1, . . . , |val(G)|V }. Let n be the number of in
(or out) neighbors of k in val(G). The node IDs of these n
nodes can be computed in time O(log(`) + nh) where ` is the
number of nonterminal edges in S and h = height(G).

Note that for string grammars, data structures have been
presented that guarantee constant time per move from one letter
to the next (or previous) [31]. This result has been extended
to grammar-compressed trees [32], and we expect it can be
generalized to SL-HR grammars.

Speed-Up Queries: One attractive feature of straight-line
context-free grammars is the ability to execute finite automata
over them without prior decompression. This was first proved
for strings (see [14]) and was later extended to trees (and
various models of tree automata, see [33]). The idea is to run
the automaton in one pass, bottom-up, through the grammar.
As an example, consider the grammar S → AAA and A→ ab
from the Introduction, and an automaton A that accepts strings
(over {a, b}) with an odd number of a’s. Thus, A has states
q0, q1 (where q0 is initial and q1 is final) and the transitions
(q0, a, q1), (q1, a, q0), and (q, b, q) for q ∈ {q0, q1}. Since the
actual active states are not known during the bottom-up run
through the grammar, we need to run the automaton in every
possible state over a rule. For the nonterminal A we obtain
(q0, A, q1) and (q1, A, q0), i.e., running in state q0 over the
string produced by A brings us to state q1, and starting in
q1 brings us to q0. Since S is the start nonterminal, we are
only interested in starting the automaton in its initial state
q0. We obtain the run (q0, A, q1)(q1, A, q0)(q0, A, q1), i.e., the
automaton arrives in its final state q1 and hence the grammar
represents a string with odd number of a’s. It should be clear
that the running time of this process is O(|Q||G|), where Q is
the set of states of the automaton, and G is the grammar.

Unfortunately, for graphs there does not exists an accepted
notion of finite-state automaton. Nevertheless, properties that
can be checked in one pass through the derivation tree of
a graph grammar have been studied under various names:
“compatible”, “finite”, and “inductive”, and it was later shown
that these notions are essentially equivalent [34]. Courcelle and
Mosbah [35] show that all properties definable in “counting
monadic second-order logic” (CMSO) belong to this class, and
by their Proposition 3.1, the complexity of evaluating a CMSO
property ψ over a derivation tree t can be done in O(|t|η),
where η is an upper bound on the complexity of evaluation
on each right-hand side of the rules in t. How can we apply
this result to SL-HR grammars G? Let G = (N,S, P ) so that
every right-hand side in P contains at most two nonterminal
edges. We are interested in data complexity, i.e., we assume ψ
to be fixed. Note that the size of the derivation tree t of G can
be exponential in |G|. It is thus prohibitive to construct t, and
instead their proposition above needs to be generalized to dags
(directed acyclic graphs) d that represent t. Next, we eliminate
η as follows. We convert G into a new SL-HR grammar G′
so that G′ is in Chomsky normal form, i.e., every right-hand

side (including the start graph) has at most two edges (see,
e.g., Proposition 3.13 of [17]). The derivation dag of G′ now
has size O(|G|). Let m be the maximum of the rank of G
and of |S|V . In the worst-case the start graph of G′ has one
nonterminal edge that is incident with all nodes in S. Thus the
maximal size of a right-hand side of G′ is in O(m).

Proposition 5. Let ψ be a fixed CMSO property. For a given
SL-HR grammar G it can be decided in O(|G|m) time whether
or not ψ holds on val(G), where m is the maximal size of a
rule of G.

Note that Proposition 5 is often stated under a fixed tree
decomposition t of width k of the graph g and then simply
becomes O(|g|). The CMSO (or compatible or finite) graph
properties have been extended to functions from graphs to
natural numbers, see e.g., Section 5 of [35]. They can be
evaluated with a similar complexity as in Proposition 5. For
the same explanation as above, this result can be applied to
SL-HR grammars. Without stating this result explicitly, we
mention some of the well-known CMSO functions: (1) maximal
and minimal degree, (2) number of connected components,
(3) number of simple cycles, (4) number of simple paths from
a source to a target, and (5) maximal and minimal length of a
simple cycle.

Reachability Queries: An important class of queries are
reachability queries. For a given simple graph g and nodes u
and v such a query asks if v is reachable from u, i.e., if there
exists a path from u to v in g. It is well known that this problem
can be solved in O(g) time. How can we solve this problem on
an SL-HR grammar G? Certainly, (u, v)-reachability is CMSO
definable and therefore Proposition 5 gives us an upper bound
of O(|G|2). We now give a direct linear time algorithm.

Theorem 6. Let g be a simple graph and G = (N,S, P ) an
SL-HR grammar with val(G) = g. Given nodes u, v ∈ Vg, it
can be determined in O(|G|) time whether or not v is reachable
from u in g.

Proof: We first compute G-representations u′, v′ of u and
v in O(|G|) time, as described in Section V. We traverse G
bottom-up with respect to ≤NT in one pass and compute for
every nonterminal A its skeleton graph sk(A). The set of nodes
of sk(A) is given by the external nodes {v1, . . . , vn} of the
right-hand side h of A. The edges are computed as follows.
First, assume that h is a terminal graph. We determine the
strongly connected components in h in linear time (e.g., using
Tarjan’s algorithm [36]). Let h′ be the corresponding graph
which has as nodes the strongly connected components of h.
We remove from h′ each strongly connected component C
that does not contain external nodes. This is done by inserting
for every pair of edges e1, e2 such that e1 is an edge from
a component D 6= C into C and e2 is an edge from C to a
component E 6= C (with E 6= D), an edge from component
D to component E. Finally, we replace each component by
a cycle of the external nodes of that component, and, for an
edge from a component D to a component E we add an edge
from an arbitrary external node of D to one of E. After having
computed in O(|G|) time the skeleta for all nonterminals, we
can solve a reachability query as follows. Let S′ be the graph
obtained from S by replacing each nonterminal edge by its
skeleton graph; clearly, it can be obtained in O(|G|) time.



Case 1: Assume that u′ and v′ are of the form u′′ and v′′,
i.e., both nodes are in the start graph. It should be clear that v
is reachable from u in val(G) if and only if v′′ is reachable
from u′′ in S′. The latter is checked in O(|S′|) time.

Case 2: Let u′ = e0 · · · enu′′ and v′ = f0 · · · fmv′′. Let
Ai be the label of ei−1 for i ∈ {1, . . . , n} and let Bj be the
label of fj−1 for j ∈ {1, . . . ,m}. We determine the set En
of external nodes of the right-hand side hn of An that are
reachable from u′′ in hn. This is done by replacing the (at
most two) nonterminal edges in hn by their skeleton graphs,
and then running a standard reachability test. We now move
up the derivation tree (viz. to the left in u′), at each step
computing a subset Ei of the external nodes of sk(Ai): we
locate the nodes corresponding Ei+1 in sk(Ai) and determine
the set Ei of external nodes reachable from these. Finally, we
obtain a set E0 of nodes in S′ (all incident with the edge e0).
In a similar way we compute a set F0 of nodes in S that are
incident with f0 (and can reach v′). Finally, we check if a node
in F0 is reachable from a node in E0. This is done by adding
edges over F0 that form a cycle, and edges over E0 that form
a cycle. We now pick arbitrary nodes f in F0 and e in E0 and
check if f is reachable from e in S′.

VI. CONCLUSIONS

We presented gRePair, a compressor based on straight-line
hyperedge replacement grammars. It is a direct generalization
of previous RePair algorithms for string- and tree-based data.
Note that gRePair over string- and tree-graphs obtains similar
compression ratios as the original specialized versions for
strings and trees [15], [16]. On our datasets of RDF and version
graphs, gRePair produces the smallest representations we are
aware of. We proved that reachability queries can be solved in
linear time with respect to the grammar, thus offering speed-
ups proportional to the compression. In the future we want
to find more query classes with this property (e.g., regular
path queries), implement such query evaluation and compare
its performance with state-of-the-art systems. We would like
to investigate other node orderings that improve compression,
and design better algorithms for approximating maximum non-
overlapping sets of digram occurrences. We would like to apply
our compression as index structures of graph databases.
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