89,338 research outputs found

    Visible and near infrared spectroscopy in soil science

    Get PDF
    This chapter provides a review on the state of soil visibleā€“near infrared (visā€“NIR) spectroscopy. Our intention is for the review to serve as a source of up-to date information on the past and current role of visā€“NIR spectroscopy in soil science. It should also provide critical discussion on issues surrounding the use of visā€“NIR for soil analysis and on future directions. To this end, we describe the fundamentals of visible and infrared diffuse reflectance spectroscopy and spectroscopic multivariate calibrations. A review of the past and current role of visā€“NIR spectroscopy in soil analysis is provided, focusing on important soil attributes such as soil organic matter (SOM), minerals, texture, nutrients, water, pH, and heavy metals. We then discuss the performance and generalization capacity of visā€“NIR calibrations, with particular attention on sample pre-tratments, co-variations in data sets, and mathematical data preprocessing. Field analyses and strategies for the practical use of visā€“NIR are considered. We conclude that the technique is useful to measure soil water and mineral composition and to derive robust calibrations for SOM and clay content. Many studies show that we also can predict properties such as pH and nutrients, although their robustness may be questioned. For future work we recommend that research should focus on: (i) moving forward with more theoretical calibrations, (ii) better understanding of the complexity of soil and the physical basis for soil reflection, and (iii) applications and the use of spectra for soil mapping and monitoring, and for making inferences about soils quality, fertility and function. To do this, research in soil spectroscopy needs to be more collaborative and strategic. The development of the Global Soil Spectral Library might be a step in the right direction

    Genome-inspired molecular identification in organic matter via Raman spectroscopy

    Full text link
    Rapid, non-destructive characterization of molecular level chemistry for organic matter (OM) is experimentally challenging. Raman spectroscopy is one of the most widely used techniques for non-destructive chemical characterization, although it currently does not provide detailed identification of molecular components in OM, due to the combination of diffraction-limited spatial resolution and poor applicability of peak-fitting algorithms. Here, we develop a genome-inspired collective molecular structure fingerprinting approach, which utilizes ab initio calculations and data mining techniques to extract molecular level chemistry from the Raman spectra of OM. We illustrate the power of such an approach by identifying representative molecular fingerprints in OM, for which the molecular chemistry is to date inaccessible using non-destructive characterization techniques. Chemical properties such as aromatic cluster size distribution and H/C ratio can now be quantified directly using the identified molecular fingerprints. Our approach will enable non-destructive identification of chemical signatures with their correlation to the preservation of biosignatures in OM, accurate detection and quantification of environmental contamination, as well as objective assessment of OM with respect to their chemical contents

    van der Waals interaction in nanotube bundles : consequences on vibrational modes

    Full text link
    We have developed a pair-potential approach for the evaluation of van der Waals interaction between carbon nanotubes in bundles. Starting from a continuum model, we show that the intertube modes range from 5cmāˆ’15 cm^{-1} to 60cmāˆ’160 cm^{-1}. Using a non-orthogonal tight-binding approximation for describing the covalent intra-tube bonding in addition, we confirme a slight chiral dependance of the breathing mode frequency and we found that this breathing mode frequency increase by āˆ¼\sim 10 % if the nanotube lie inside a bundle as compared to the isolated tube.Comment: 5 pages, 2 figure

    Electronic excitation of transition metal nitrides by light ions with keV energies

    Full text link
    We investigated the specific electronic energy deposition by protons and He ions with keV energies in different transition metal nitrides of technological interest. Data were obtained from two different time-of-flight ion scattering setups and show excellent agreement. For protons interacting with light nitrides, i.e. TiN, VN and CrN, very similar stopping cross sections per atom were found, which coincide with literature data of N2 gas for primary energies <= 25 keV. In case of the chemically rather similar nitrides with metal constituents from the 5th and 6th period, i.e. ZrN and HfN, the electronic stopping cross sections were measured to exceed what has been observed for molecular N2 gas. For He ions, electronic energy loss in all nitrides was found to be significantly higher compared to the equivalent data of N2 gas. Additionally, deviations from velocity proportionality of the observed specific electronic energy loss are observed. A comparison with predictions from density functional theory for protons and He ions yields a high apparent efficiency of electronic excitations of the target for the latter projectile. These findings are considered to indicate the contributions of additional mechanisms besides electron hole pair excitations, such as electron capture and loss processes of the projectile or promotion of target electrons in atomic collisions

    Photophysics and Inverted Solvatochromism of 7,7,8,8-Tetracyanoquinodimethane (TCNQ)

    Get PDF
    We report the absorption, fluorescence, and Raman spectroscopy of 7,7,8,8- tetracyanoquinodimethane (TCNQ) in a variety of solvents. The fluorescence quantum yields (QYs) of linear alkane solutions are similar to one another, but QY is shown to acutely decrease in other solvents with increasing polarities. The slope of the solvatochromic plot of absorption maxima is inverted from negative to positive with an increase in solvent polarity. A significant change in the frequency of carbon-carbon double bond stretching modes is not observed in Raman spectra of TCNQ in different solvents. The molar absorption coefficient is determined to calculate the oscillator strength of the absorption band. The radiative decay rate constant calculated from the oscillator strength is approximately ten times larger than that elucidated from the fluorescence lifetime and QY. These spectroscopic parameters reveal that the relaxation occurs from a Franck-Condon excited state to a distinct fluorescence emissive state with a smaller transition dipole moment

    Wide-range optical studies on various single-walled carbon nanotubes: the origin of the low-energy gap

    Full text link
    We present wide-range (3 meV - 6 eV) optical studies on freestanding transparent carbon nanotube films, made from nanotubes with different diameter distributions. In the far-infrared region, we found a low-energy gap in all samples investigated. By a detailed analysis we determined the average diameters of both the semiconducting and metallic species from the near infrared/visible features of the spectra. Having thus established the dependence of the gap value on the mean diameter, we find that the frequency of the low energy gap is increasing with increasing curvature. Our results strongly support the explanation of the low-frequency feature as arising from a curvature-induced gap instead of effective medium effects. Comparing our results with other theoretical and experimental low-energy gap values, we find that optical measurements yield a systematically lower gap than tunneling spectroscopy and DFT calculations, the difference increasing with decreasing diameter. This difference can be assigned to electron-hole interactions.Comment: 9 pages, 8 figures, to be published in Physical Review B, supplemental material attached v2: Figures 1, 7 and 8 replaced, minor changes to text; v3: Figures 3, 4 and 5 replaced, minor changes to tex
    • ā€¦
    corecore