292 research outputs found

    Structure and Supersaturation for Intersecting Families

    Full text link
    The extremal problems regarding the maximum possible size of intersecting families of various combinatorial objects have been extensively studied. In this paper, we investigate supersaturation extensions, which in this context ask for the minimum number of disjoint pairs that must appear in families larger than the extremal threshold. We study the minimum number of disjoint pairs in families of permutations and in kk-uniform set families, and determine the structure of the optimal families. Our main tool is a removal lemma for disjoint pairs. We also determine the typical structure of kk-uniform set families without matchings of size ss when n2sk+38s4n \ge 2sk + 38s^4, and show that almost all kk-uniform intersecting families on vertex set [n][n] are trivial when n(2+o(1))kn\ge (2+o(1))k.Comment: 23 pages + appendi

    Intersecting families of discrete structures are typically trivial

    Full text link
    The study of intersecting structures is central to extremal combinatorics. A family of permutations FSn\mathcal{F} \subset S_n is \emph{tt-intersecting} if any two permutations in F\mathcal{F} agree on some tt indices, and is \emph{trivial} if all permutations in F\mathcal{F} agree on the same tt indices. A kk-uniform hypergraph is \emph{tt-intersecting} if any two of its edges have tt vertices in common, and \emph{trivial} if all its edges share the same tt vertices. The fundamental problem is to determine how large an intersecting family can be. Ellis, Friedgut and Pilpel proved that for nn sufficiently large with respect to tt, the largest tt-intersecting families in SnS_n are the trivial ones. The classic Erd\H{o}s--Ko--Rado theorem shows that the largest tt-intersecting kk-uniform hypergraphs are also trivial when nn is large. We determine the \emph{typical} structure of tt-intersecting families, extending these results to show that almost all intersecting families are trivial. We also obtain sparse analogues of these extremal results, showing that they hold in random settings. Our proofs use the Bollob\'as set-pairs inequality to bound the number of maximal intersecting families, which can then be combined with known stability theorems. We also obtain similar results for vector spaces.Comment: 19 pages. Update 1: better citation of the Gauy--H\`an--Oliveira result. Update 2: corrected statement of the unpublished Hamm--Kahn result, and slightly modified notation in Theorem 1.6 Update 3: new title, updated citations, and some minor correction

    Erd\H{o}s-Ko-Rado for random hypergraphs: asymptotics and stability

    Get PDF
    We investigate the asymptotic version of the Erd\H{o}s-Ko-Rado theorem for the random kk-uniform hypergraph Hk(n,p)\mathcal{H}^k(n,p). For 2k(n)n/22 \leq k(n) \leq n/2, let N=(nk)N=\binom{n}k and D=(nkk)D=\binom{n-k}k. We show that with probability tending to 1 as nn\to\infty, the largest intersecting subhypergraph of Hk(n,p)\mathcal{H}^k(n,p) has size (1+o(1))pknN(1+o(1))p\frac kn N, for any pnkln2 ⁣(nk)D1p\gg \frac nk\ln^2\!\left(\frac nk\right)D^{-1}. This lower bound on pp is asymptotically best possible for k=Θ(n)k=\Theta(n). For this range of kk and pp, we are able to show stability as well. A different behavior occurs when k=o(n)k = o(n). In this case, the lower bound on pp is almost optimal. Further, for the small interval D1p(n/k)1εD1D^{-1}\ll p \leq (n/k)^{1-\varepsilon}D^{-1}, the largest intersecting subhypergraph of Hk(n,p)\mathcal{H}^k(n,p) has size Θ(ln(pD)ND1)\Theta(\ln (pD)N D^{-1}), provided that knlnnk \gg \sqrt{n \ln n}. Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in Hk(n,p)\mathcal{H}^k(n,p), for essentially all values of pp and kk

    Supersaturation and stability for forbidden subposet problems

    Get PDF
    We address a supersaturation problem in the context of forbidden subposets. A family F\mathcal{F} of sets is said to contain the poset PP if there is an injection i:PFi:P \rightarrow \mathcal{F} such that pPqp \le_P q implies i(p)i(q)i(p) \subset i (q). The poset on four elements a,b,c,da,b,c,d with a,bc,da,b \le c,d is called butterfly. The maximum size of a family F2[n]\mathcal{F} \subseteq 2^{[n]} that does not contain a butterfly is Σ(n,2)=(nn/2)+(nn/2+1)\Sigma(n,2)=\binom{n}{\lfloor n/2 \rfloor}+\binom{n}{\lfloor n/2 \rfloor+1} as proved by De Bonis, Katona, and Swanepoel. We prove that if F2[n]\mathcal{F} \subseteq 2^{[n]} contains Σ(n,2)+E\Sigma(n,2)+E sets, then it has to contain at least (1o(1))E(n/2+1)(n/22)(1-o(1))E(\lceil n/2 \rceil +1)\binom{\lceil n/2\rceil}{2} copies of the butterfly provided E2n1εE\le 2^{n^{1-\varepsilon}} for some positive ε\varepsilon. We show by a construction that this is asymptotically tight and for small values of EE we show that the minimum number of butterflies contained in F\mathcal{F} is exactly E(n/2+1)(n/22)E(\lceil n/2 \rceil +1)\binom{\lceil n/2\rceil}{2}

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(V(H)r1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure

    Colouring set families without monochromatic k-chains

    Full text link
    A coloured version of classic extremal problems dates back to Erd\H{o}s and Rothschild, who in 1974 asked which nn-vertex graph has the maximum number of 2-edge-colourings without monochromatic triangles. They conjectured that the answer is simply given by the largest triangle-free graph. Since then, this new class of coloured extremal problems has been extensively studied by various researchers. In this paper we pursue the Erd\H{o}s--Rothschild versions of Sperner's Theorem, the classic result in extremal set theory on the size of the largest antichain in the Boolean lattice, and Erd\H{o}s' extension to kk-chain-free families. Given a family F\mathcal{F} of subsets of [n][n], we define an (r,k)(r,k)-colouring of F\mathcal{F} to be an rr-colouring of the sets without any monochromatic kk-chains F1F2FkF_1 \subset F_2 \subset \dots \subset F_k. We prove that for nn sufficiently large in terms of kk, the largest kk-chain-free families also maximise the number of (2,k)(2,k)-colourings. We also show that the middle level, ([n]n/2)\binom{[n]}{\lfloor n/2 \rfloor}, maximises the number of (3,2)(3,2)-colourings, and give asymptotic results on the maximum possible number of (r,k)(r,k)-colourings whenever r(k1)r(k-1) is divisible by three.Comment: 30 pages, final versio
    corecore